精英家教网 > 初中数学 > 题目详情
精英家教网如图,在四边形ABCD中,AD=DC=1,∠DAB=∠DCB=90°,BC和AD的延长线交于P,求AB•S△PAB的最小值.
分析:设PD=x(x>1),根据勾股定理求出PC,证Rt△PCD∽Rt△PAB,得到
AB
CD
=
PA
PC
,求出AB,根据三角形的面积公式求出y=AB•S△PAB,整理后得到y≥4,即可求出答案.
解答:解:设PD=x(x>1),则由勾股定理得:PC=
x2-1

∵∠P=∠P,∠PCD=∠A=90°,
∴Rt△PCD∽Rt△PAB,
AB
CD
=
PA
PC

AB=
CD•PA
PC
=
x+1
x2-1

设y=AB•S△PAB,代入可得y=
(x+1)3
2(x2-1)
=
(x+1)2
2(x-1)

去分母,得x2+2(1-y)x+1+2y=0,
因为x是实数,所以△=4(1-y)2-4(1+2y)=4y(y-4)≥0,
又因为y>0,所以y≥4.即y的最小值为4,故当PD=3时,AB•S△PAB的最小值为4.
答:AB•S△PAB的最小值是4.
点评:本题主要考查对三角形的面积,相似三角形的性质和判定,勾股定理,面积和等积变形等知识点的理解和掌握,能求出方程x2+2(1-y)x+1+2y=0中y的最小值是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案