精英家教网 > 初中数学 > 题目详情

如图,是反比例函数的图象的一支.根据给出的图象回答下列问题:

(1)该函数的图象位于哪几个象限?请确定m的取值范围;
(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?

(1)函数图象位于第二、四象限,m<5。
(2)①当y1<y2<0时,x1<x2
②当0<y1<y2,x1<x2

解析试题分析:(1)根据反比例函数图象的对称性可知,该函数图象位于第二、四象限,则m﹣5<0,据此可以求得m的取值范围;
(2)根据函数图象中“y值随x的增大而增大”进行判断。 
解:(1)∵反比例函数图象关于原点对称,图中反比例函数图象位于第四象限,
∴函数图象位于第二、四象限,则m﹣5<0,解得,m<5。
∴m的取值范围是m<5。
(2)由(1)知,函数图象位于第二、四象限,
∴在每一个象限内,函数值y随自变量x增大而增大。
①当y1<y2<0时,x1<x2
②当0<y1<y2,x1<x2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

如图,反比例函数y=(x>0)的图象经过等腰梯形OABC的点A与BC的中点D.若等腰梯形OABC的面积为6,则k的值为       

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

双曲线y=经过点(2,﹣3),则k=   

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

若点A(﹣2,a),B(﹣1,b),C(3,c)在双曲线(k>0)上,则a、b、c的大小关系为        (用“<”将a、b、c连接起来).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,在平面直角坐标系中,已知直线l:,双曲线。在l上取点A1,过点A1轴的垂线交双曲线于点B1,过点B1轴的垂线交于点A2,请继续操作并探究:过点A2轴的垂线交双曲线于点B2,过点B2轴的垂线交于点A3,…,这样依次得到上的点A1,A2,A3,…,An,…。记点An的横坐标为,若,则=       =       ;若要将上述操作无限次地进行下去,则不能取的值是__________

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,矩形OABC的顶点B的坐标为(1,2),反比例函数y=(0<m<2)的图象与AB交于点E,与BC交于点F,连接OE、OF、EF.
(1)若点E是AB的中点,则m=     ,S△OEF=       
(2)若S△OEF=2S△BEF,求点E的坐标;
(3)是否存在点E及y轴上的点M,使得△MFE与△BFE全等?若存在,写出此时点E的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,点A,B分别在轴,轴上,点D在第一象限内,DC⊥轴于点C,AO=CD=2,AB=DA=,反比例函数的图象过CD的中点E。

(1)求证:△AOB≌△DCA;
(2)求的值;
(3)△BFG和△DCA关于某点成中心对称,其中点F在轴上,试判断点G是否在反比例函数的图象上,并说明理由。(

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,反比例函数的图象和矩形ABCD在第二象限,AD平行于x轴,且AB=2,AD=4,点C的坐标为(-2,4).
(1)直接写出A、B、D三点的坐标;
(2)若将矩形只向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,求反比例函数的解析式和此时直线AC的解析式y=mx+n.并直接写出满足的x取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,反比例函数的图象与一次函数y=kx+b的图象相交于两点A(m,3)和B(﹣3,n).

(1)求一次函数的表达式;
(2)观察图象,直接写出使反比例函数值大于一次函数值的自变量x的取值范围.

查看答案和解析>>

同步练习册答案