精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为A(-4,5),C(-1,3).

(1)请在网格平面内作出平面直角坐标系(不写作法);

(2)请作出△ABC关于y轴对称△A'B'C';

(3)分别写出A'、B'、C'的坐标.

【答案】(1)作图见解析;(2)作图见解析;(3)(4,5) (2,1)(1,3).

【解析】试题分析:(1)根据题意画出坐标系即可;

2)根据关于y轴对称的点的坐标特点作出ABC即可;

3)根据各点在坐标系中的位置写出点ABC的坐标即可.

试题解析:解:(1)如图所示

由题意知,C的坐标为C-13),故以C点起始向右移动一个单位,向下移动3个单位可得原点OO为原点建立平面直角坐标系;

2如图所示

3ABC的坐标分别为45) (21)(13).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠BAP+APD=180°,∠1=2,求证:∠E=F

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,AB坐标为(60)(06)P为线段AB上的一点

(1) 如图1,若SAOP12,求P的坐标

(2) 如图2,若PAB的中点,点MN分别是OAOB边上的动点,点M从顶点A、点N从顶点O同时出发,且它们的速度都为1 cm/s,则在MN运动的过程中,线段PMPN之间有何关系?并证明

(3) 如图3,若P为线段AB上异于AB的任意一点,过B点作BDOP,交OPOA分别与FD两点,EOA上一点,且∠PEABDO,试判断线段ODAE的数量关系,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市规划中某地段地铁线路要穿越护城河PQ,站点A和站点B在河的两侧,要测算出A、B间的距离.工程人员在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q出,测得A位于北偏东49°方向,B位于南偏西41°方向.根据以上数据,求A、B间的距离.(参考数据:cos41°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形OABC的三个顶点A(0,10),B(8,10),C(8,0),过O、C两点的抛物线y=ax2+bx+c与线段AB交于点D,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.

(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒.请问当t为何值时,以P、Q、C为顶点的三角形是等腰三角形?
(3)若点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M、N、C、E为顶点四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两名运动员进行射击选拨赛,每人射击10次,其中射击中靶情况如下表:

第一次

第二次

第三次

第四次

第五次

第六次

第七次

第八次

第九次

第十次

7

10

8

10

9

9

10

8

10

9

10

7

10

9

9

10

8

10

7

10

(1)选手甲的成绩的中位数是__________分;选手乙的成绩的众数是__________分;

(2)计算选手甲的平均成绩和方差;

(2)已知选手乙的成绩的方差是1.4,则成绩较稳定的是哪位选手?(直按写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,点C是半圆O上一点,∠COB=60°,点D是OC的中点,连接BD,BD的延长线交半圆O于点E,连接OE,EC,BC.
(1)求证:△BDO≌△EDC.
(2)若OB=6,则四边形OBCE的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠ACB是锐角,点D在射线BC上运动,连接AD,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.
(1)操作发现:
若AB=AC,∠BAC=90°,当D在线段BC上时(不与点B重合),如图①所示,请你直接写出线段CE和BD的位置关系和数量关系是

(2)猜想论证:
在(1)的条件下,当D在线段BC的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.

(3)拓展延伸:
如图③,若AB≠AC,∠BAC≠90°,点D在线段BC上运动,试探究:当锐角∠ACB等于度时,线段CE和BD之间的位置关系仍成立(点C、E重合除外)?此时若作DF⊥AD交线段CE于点F,且当AC=3 时,请直接写出线段CF的长的最大值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中, 为线段上一点, 为射线上一点,且,连接

)如图

①依题意补全图形.

②若 ,求的长.

)如图,若,连接并延长,交于点,求证:

查看答案和解析>>

同步练习册答案