分析 (1)连接AE,分别作出AE,AB的垂直平分线,进而得到交点,即为圆心,求出答案;
(2)根据题意首先得出四边形AFE′D是矩形,进而利用勾股定理得出答案.
解答 解:(1)如图1所示:
⊙O即为所求.
(2)如图2,在(1)中设AB的垂直平分线交AB于点F,交CD于点E′.
则AF=$\frac{1}{2}$AB=1,∠AFE′=90°,
∵四边形ABCD是正方形,
∴∠FAD=∠D=90°,
∴四边形AFE′D是矩形,
∴E′F=AD=2,DE′=AF=1,
∴点E′与点E重合,
连接OA,设⊙O的半径为r,
可得OA=OE=r,
∴OF=EF-OE=2-r,
∴在Rt△AOF中,AO2=AF2+OF2,
∴r2=12+(2-r)2,
∴解得:r=$\frac{5}{4}$,
∴⊙O的半径为$\frac{5}{4}$.
点评 此题主要考查了复杂作图以及勾股定理和矩形的判定与性质等知识,正确应用勾股定理是解题关键.
科目:初中数学 来源: 题型:选择题
A. | 0.518×104 | B. | 5.18×105 | C. | 51.8×104 | D. | 518×103 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | k>0,b>2 | B. | k>0,b<2 | C. | k<0,b>2 | D. | k<0,b<2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1:2 | B. | 2:1 | C. | 2:3 | D. | 3:2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | m<3 | B. | m≤3 | C. | m<3且m≠2 | D. | m≤3且m≠2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com