精英家教网 > 初中数学 > 题目详情

如图,∠A、∠DOE和∠BEC的大小关系是

[  ]

A.∠A>∠DOE>∠BEC

B.∠DOE>∠A>∠BEC

C.∠BEC>∠DOE>∠A

D.∠DOE>∠BEC>∠A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,
求证:阴影部分四边形OFCG的面积是△ABC的面积的
1
3

(2)如图2,若∠DOE保持120°角度不变,
求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图精英家教网中阴影部分)面积始终是△ABC的面积的
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

在课堂上,郝老师将一个三角板的直角顶点与点C重合,它的两条直角边也分别与x轴正半轴、y轴正半轴相交于E点、D点.当三角板绕点C旋转到与x轴、y轴垂直时,如图1,已知射线OM为第一象限的角平分线,C点的坐标为(2,2)

(1)四边形ODCE的面积是
4
4
;点D的坐标为
(0,2)
(0,2)
;点E的坐标为
(2,0)
(2,0)

(2)当郝老师将三角板绕点C旋转到与x轴、y轴不垂直时,如图2,姚小明同学马上举手回答说,在旋转过程中,四边形ODCE的面积始终保持不变,其值为定值.老师说他的回答是正确的!请你说明其中的道理.
(3)最后,郝老师过D、O、E三点画⊙O1,如图3,设△DOE的内切圆的直径为d,并用肯定的语气说,不论⊙O1的大小、位置如何变化,d+DE的值永远不变.同学们,你们知道这里的奥妙吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

一个三角板的直角顶点与点C重合,它的两条直角边也分别与x轴正半轴、y轴正半轴相交于E点、D点.当三角板绕点C旋转到与x轴、y轴垂直时,如图1,已知射线OM为第一象限的角平分线,C点的坐标为(2,2)
(1)四边形ODCE的面积是
4
4
;点D的坐标为
(0,2)
(0,2)
;点E的坐标为
(2,0)
(2,0)

(2)将三角板绕点C旋转到与x轴、y轴不垂直时,如图2,在旋转过程中,四边形ODCE的面积始终保持不变,其值为定值.请你说明其中的道理.
(3)经过D、O、E三点画⊙O1,如图3,设△DOE的内切圆的直径为d,请证明:不论⊙O1的大小、位置如何变化,d+DE的值不变.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠A、∠DOE和∠BEC的大小关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC与△DOE是位似图形,A(0,3),B(-2,0),C(1,0),E(6,0),△ABC与△DOE的位似中心为M.
(1)写出D点的坐标;
(2)在图中画出M点,并求M点的坐标.

查看答案和解析>>

同步练习册答案