如图,等腰梯形ABCD中,AB=CD,AD∥BC,点E、F在BC上,且BE=CF.
(1)求证:AE=DF;
(2)若AD=EF,试证明四边形AEFD为矩形.
(1)利用等腰梯形的性质和三角形全等的判定方法可证明△ABE≌△DCF,利用全等三角形的性质进而得到AE=DF;
(2)先证明△ABF≌△DCE,得打AF=DE,进而证明四边形AEFD为平行四边形,再利用对角线相等的平行四边形为矩形即可证明.
【解析】
试题分析:(1)∵四边形ABCD是等腰梯形,
∴AB=CD,∠ABC=∠DCB.
又∵BE=CF,
∴△ABE≌△DCF.
∴AE=DF;
(2)∵BE=CF,
∴BF=CE
又∵AB=CD,∠ABC=∠DCB,
∴△ABF≌△DCE,
∴AF=DE.
又∵AD=EF,AD∥BC,
∴四边形AEFD为平行四边形.
∴四边形AEFD为矩形.
考点:全等三角形的判定和性质,等腰梯形的性质,矩形的判定方法
点评:本题知识点较多,综合性较强,是中考常见题,难度不大,熟练掌握全等三角形的判定和性质是解题关键.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com