精英家教网 > 初中数学 > 题目详情
已知:在△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为(即cosC=),则AC边上的中线长是   
【答案】分析:分两种情况:①△ABC的内角∠ABD=45°;②△ABC的外角∠ABD=45°.这两种情况,都可以首先作△ABC的高AD,解直角△ACD与直角△ABD,得到BC的长,再利用余弦定理求解.
解答:解:分两种情况:
①如图1.
作△ABC的高AD,BE为AC边的中线.
∵在直角△ACD中,AC=a,cosC=
∴CD=a,AD=a.
∵在直角△ABD中,∠ABD=45°,
∴BD=AD=a,
∴BC=BD+CD=a.
在△BCE中,由余弦定理,得
BE2=BC2+EC2-2BC•EC•cosC
=a2+a2-2×
=a2
∴BE=a;
②如图2.
作△ABC的高AD,BE为AC边的中线.
∵在直角△ACD中,AC=a,cosC=
∴CD=a,AD=a.
∵在直角△ABD中,∠ABD=45°,
∴BD=AD=a,
∴BC=CD-BD=a.
在△BCE中,由余弦定理,得
BE2=BC2+EC2-2BC•EC•cosC
=a2+a2-2×
=a2
∴BE=a.
综上可知AC边上的中线长是a或a.
故答案为a或a.
点评:本题考查了解直角三角形,勾股定理,余弦定理,有一定难度,进行分类讨论是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案