精英家教网 > 初中数学 > 题目详情
(2013•泸州)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD2=CA•CB;
(2)求证:CD是⊙O的切线;
(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=
23
,求BE的长.
分析:(1)通过相似三角形(△ADC∽△DBC)的对应边成比例来证得结论;
(2)如图,连接OD.欲证明CD是⊙O的切线,只需证明CD⊥OA即可;
(3)通过相似三角形△EBC∽△ODC的对应边成比例列出关于BE的方程,通过解方程来求线段BE的长度即可.
解答:(1)证明:∵∠CDA=∠CBD,∠C=∠C,
∴△ADC∽△DBC,
AC
DC
=
DC
BC
,即CD2=CA•CB;

(2)证明:如图,连接OD.
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠1+∠3=90°.
∵OA=OD,
∴∠2=∠3,
∴∠1+∠2=90°.
又∠CDA=∠CBD,即∠4=∠1,
∴∠4+∠2=90°,即∠CDO=90°,
∴OD⊥CD.
又∵OD是⊙O的半径,
∴CD是⊙O的切线;

(3)解:如图,连接OE.
∵EB、CD均为⊙O的切线,
∴ED=EB,OE⊥DB,
∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°,
∴∠ABD=∠OEB,
∴∠CDA=∠OEB.
而tan∠CDA=
2
3

∴tan∠OEB=
OB
BE
=
2
3

∵Rt△CDO∽Rt△CBE,
CD
CB
=
OD
BE
=
OB
BE
=
2
3

∴CD=8,
在Rt△CBE中,设BE=x,
∴(x+8)2=x2+122
解得x=5.
即BE的长为5.
点评:本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线是圆的切线;也考查了圆周角定理的推论以及三角形相似的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•泸州)如图所示为某几何体的示意图,则该几何体的主视图应为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泸州)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10
5
cm,且tan∠EFC=
3
4
,那么该矩形的周长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泸州)如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:
(1)图形中全等的三角形只有两对;
(2)△ABC的面积等于四边形CDOE的面积的2倍;
(3)CD+CE=
2
OA;(4)AD2+BE2=2OP•OC.
其中正确的结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泸州)如图,已知函数y=
4
3
x与反比例函数y=
k
x
(x>0)的图象交于点A.将y=
4
3
x的图象向下平移6个单位后与双曲线y=
k
x
交于点B,与x轴交于点C.
(1)求点C的坐标;
(2)若
OA
CB
=2,求反比例函数的解析式.

查看答案和解析>>

同步练习册答案