解:(1)∵一次函数y=2x-1的图象经过(a,b),(a+k,b+k+2)两点,
代入得:
,
解得:k=2,
代入反比例函数的解析式得:y=
=
,
∴反比例函数的解析式是y=
.
(2)解方程组
得:
,
,
∴两函数的交点坐标是(-
,-2),(1,1),
∵交点A在第一象限,
∴A(1,1).
(3)在x轴上存在点P,使△AOP为等腰三角形,
理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,
∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(
,0),(-
,0);
②以A为圆心,以OA为半径作圆,交x轴于两点E,此时OA=AE,
∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);
③作OA的垂直平分线交x轴于F,此时AF=OF,
∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);
∴存在4个点P,使△AOP是等腰三角形.
分析:(1)把(a,b),(a+k,b+k+2)代入一次函数的解析式,得出方程组,求出k即可;
(2)解由反比例函数和一次函数的解析式组成发的方程组,求出方程组的解即可;
(3)根据等腰三角形的判定,有三种情况:①当OA=OP时,有2个点符合;②当OA=AP时,有1个点符合;③当AP=OP时,有1个点符合.
点评:本题考查了用待定系数法求反比例函数的解析式,一次函数与反比例函数的交点问题,等腰三角形的判定等知识点的运用,主要考查学生综合运用性质进行推理和计算的能力,用的数学思想是分类讨论思想,题目比较好,有一定的难度.