【题目】如图,把矩形ABCD沿EF,GH折叠,使点B,C落在AD上同一点P处,∠FPG=90°,△A′EP的面积是8,△D′PH的面积是4,则矩形ABCD的面积等于_____.
【答案】8(3+2)
【解析】
由翻折可得∠A′=∠FPG,所以得A′E∥PF,可以证明△AE′P∽△D′PH,根据相似三角形面积的比等于相似比的平方可求得A′E=D′P,再根据△A′EP的面积是8可求A′P=D′P=4,从而AE=A′E=4,再根据勾股定理求得PE的长,进而求得D′H、PH,所以得AD=AE+EP+PH+DH,最后求得矩形ABCD的面积.
解:由翻折可知:
∠A=∠A′=90°,∠D=∠D′=90°,
∵∠FPG=90°,
∴∠A′=∠FPG,
∴A′E∥PF,
∴∠A′EP=∠D′PH,
∴△AE′P∽△D′PH,
∴,
∵AB=CD,AB=A′P,CD=D′P,
∴A′P=D′P,
∵,
∴A′E=D′P,
∴S△A′EP=A′EA′P=×D′PD′P=8,
解得D′P=4(负值舍去),
∴A′P=D′P=4,
∴AE=A′E=4,
∴EP=,
∴PH=
DH=D′H=2,
∴AD=AE+EP+PH+DH
=4+4+2+2
=6+4+2.
AB=A′P=4,
∴S矩形ABCD=ABAD
=4(6+4+2)
=8(3+2+).
故答案为:8(3+2).
科目:初中数学 来源: 题型:
【题目】一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车相遇后都停下来休息,快车休息2个小时后,以原速的继续向甲行驶,慢车休息3小时后,接到紧急任务,以原速的返回甲地,结果快车比慢车早2.25小时到达甲地,两车之间的距离S(千米)与慢车出发的时间t(小时)的函数图象如图所示,则当快车到达甲地时,慢车距乙地______千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCD的对角线BD经过坐标原点O,矩形的边分别平行于坐标轴,点A在函数(≠0,<0)的图象上,点C的坐标为(2,),则的值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB为的直径,点C是半圆上一点,CE⊥AB于E,BF∥OC,连接BC,CF.
(1)求证:∠OCF=∠ECB;
(2)当AB=10,BC=,求CF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象经过点,过作轴于点.点为反比例函数图象上的一动点,过点作轴于点,连接.直线与轴的负半轴交于点.
(1)求反比例函数的表达式;
(2)若,求的面积;
(3)是否存在点,使得四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=a,AD=b,点E为对角线AC上一点,连接DE,以DE为边,作矩形DEFG,点F在边BC上;
(1)观察猜想:如图1,当a=b时,=______,∠ACG=______;
(2)类比探究:如图2,当a≠b时,求的值(用含a、b的式子表示)及∠ACG的度数;
(3)拓展应用:如图3,当a=6,b=8,且DF⊥AC,垂足为H,求CG的长;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴、轴分别相交于点B、C,经过B、C两点的抛物线与轴的另一个交点为A,顶点为P,且对称轴为直线。点G是抛物线位于直线下方的任意一点,连接PB、GB、GC、AC .
(1)求该抛物线的解析式;
(2)求△GBC面积的最大值;
(3)连接AC,在轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边△ABC,顶点B(0,0),C(2,0),规定把△ABC先沿x轴绕着点C顺时针旋转,使点A落在x轴上 ,称为一次变换,再沿x轴绕着点A顺时针旋转,使点B落在x轴上 ,称为二次变换,……经过连续2017次变换后,顶点A的坐标是:
A. (4033, ) B. (4033,0) C. (4036, ) D. (4036,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】寒假中,某校七年级开展“阅读经典,读一本好书”的活动.为了解学生阅读情况,从全年级学生中随机抽取了部分学生调查读书种类情况,并进行统计分析,绘制了如下不完整的统计图表:
读书种类情况统计表
种类 | 频数 | 百分比 |
A.科普类 | a | 32% |
B.文学类 | 20 | 40% |
C.艺术类 | 8 | b |
D.其他类 | 6 | 12% |
请根据以上信息,解答下列问题:
(1)填空:a= ,b= ,并补全条形统计图;
(2)若绘制“阅读情况扇形统计图”,则“艺术类”所对应扇形的圆心角度数为 °;
(3)若该校七年级共有800人,请估计全年级在本次活动中读书种类为“艺术类”的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com