精英家教网 > 初中数学 > 题目详情
12.先化简,再求值.
(1)($\frac{1}{a-1}$-$\frac{a}{1-a}$)÷$\frac{1}{{a}^{2}-1}$,其中a=$\sqrt{2}-1$.
(2)[a+1-$\frac{4a-5}{a-1}$]÷[$\frac{1}{a-1}$-$\frac{2}{{a}^{2}-a}$],其中a=-1.

分析 (1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值;
(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.

解答 解:(1)原式=$\frac{a+1}{a-1}$•(a+1)(a-1)=(a+1)2
当a=$\sqrt{2}$-1时,原式=2;
(2)原式=$\frac{{a}^{2}-1-4a+5}{a-1}$÷$\frac{a-2}{a(a-1)}$=$\frac{(a-2)^{2}}{a-1}$•$\frac{a(a-1)}{a-2}$=a(a-2),
当a=-1时,原式=3.

点评 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.分解因式:ab-ab2=ab(1-b).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,河流的两岸MN、PQ互相平行,河岸PQ上有一排间隔为50m的电线杆C、D、E…某人在河岸MN的A处测得∠DAN=38°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CF(结果精确到0.1,参考数据sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,Sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min),绘制成如下统计表(其中A表示0~10min;B表示11~20min;C表示21~30min,时间取整数):
 干家务活平均时间 频数 百分比
 A 10 25%
 B a 62.5%
 C 5 b
 合计 c
(1)统计表中的a=25;b=12.5%;c=40.
(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示.
(3)该校八年级共有240学生,求每天干家务活的平均时间在11~20min的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.若已知|x-1|+(2y+1)2+(3z+2)2=0,则2xy+z=$-1\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.某县有5500名学生参加2014年普通高中升学考试,为了了解考试情况,从中抽取1000名学生的中考成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②5500名考生是总体;③样本容量是1000.其中正确的说法有③(填上正确的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.

(1)当AD=CD时,求证:DE∥AC;
(2)探究:AD为何值时,以B,M,E为顶点的三角形与以C,E,N为顶点的三角形相似?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知a为有理数,化简:$\sqrt{-{a}^{3}}$-a$\sqrt{-\frac{1}{a}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:抛物线y=mx2+(2m+2)x+m+2与x轴交于点A、B (A左B右),其中点B的坐标为(7,0),设抛物线的顶点为C.

(1)求抛物线的解析式和点C的坐标;
(2)如图1,若AC交y轴于点D,过D点作DE∥AB交BC于E.点P为DE上一动点,PF⊥AC于F,PG⊥BC于G.设点P的横坐标为a,四边形CFPG的面积为y,求y与a的函数关系式和y的最大值;
(3)如图2,在条件(2)下,过P作PH⊥x轴于点H,连结FH、GH,是否存在点P,使得△PFH与PHG相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案