精英家教网 > 初中数学 > 题目详情
12.已知梯形的两条对角线把中位线三等分,则梯形上底与下底的比为(  )
A.1:2B.1:3C.2:3D.3:5

分析 设梯形的中位线为3x,根据梯形中位线定理和平行线等分线段定理得到EG是△ABD的中位线和GF是△CBD的中位线,即可得到答案.

解答 解:设梯形的中位线为3x,
则EG=GH=HF=x,
∵EF是梯形的中位线,
∴EF∥AD∥BC,
∵E是AB的中点,
∴EG是△ABD的中位线,∴AD=2EG=2x,
∵F是CD的中点,
∴GF是△CBD的中位线,∴BC=2GF=4x,
∴AD:BC=1:2,
故选:A.

点评 本题考查的是梯形和三角形中位线定理,掌握梯形的中位线平行于两底且等于两底和的一半是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,在矩形ABCD中,AB=6cm,BC=8cm,点P从A开始沿AB边向点B以1cm/s的速度移动,点Q从点B边开始沿BC边向点C以2cm/s的速度移动.
①如果P,Q分别从A,B同时出发,经几秒钟△PBQ的面积等于8cm2
②如果P,Q分别从A,B同时出发,且点P到达点B后沿BC方向在射线CD上前进,点Q到点C后沿CD方向在射线CD上前进,经几秒钟△PCQ的面积等于24cm2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,在矩形ABCD中,点E为BC边上一点,连接AE,将△ABE沿AE折叠得到△AFE,且EF的延长线恰好经过点D,若BE=2,CE=3,则AE的长为(  )
A.2$\sqrt{6}$B.5C.2$\sqrt{5}$D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知:如图,AD⊥BC于D,E为BC中点,EF⊥BC交AB于F,AB=9cm,BC=6cm,DC=2cm,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.计算:($\frac{1}{2}$-1)($\frac{1}{3}$-1)($\frac{1}{4}$-1)…($\frac{1}{99}$-1)($\frac{1}{100}$-1)=-$\frac{1}{100}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,AC、BD相交于点O,BP、CP分别平分∠ABD、∠ACD,且相交于点P.
(1)试探索∠P与∠A、∠D之间的数量关系;
(2)若∠A:∠D:∠P=2:4:x,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若(ax-b)(3x+4)=6x2+cx+72,则a=2,b=-18,c=62.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若n(n≠0)是关于x的方程x2+2mx+2n=0的根,则2m+n=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,∠ABO=2∠BAO,P为x轴正半轴一动点,BC平分∠ABP,PC平分∠APF,OD平分∠POE
(1)求∠BAO的度数;
(2)求值:∠C=15°+$\frac{1}{2}$∠OAP;
(3)P在运动中,∠C+∠D的值是否变化?若发生变化,说明理由;若不变,求其值.

查看答案和解析>>

同步练习册答案