A. | ①②③ | B. | ①②④ | C. | ②③④ | D. | ①②③④ |
分析 由折叠的性质、矩形的性质与角平分线的性质,可证得CF=FM=DF;易求得∠BFE=∠BFN,则可得BF⊥EN;易证得△BEN是等腰三角形,但无法判定是等边三角形;故正确的结论有3个.
解答 解:∵四边形ABCD是矩形,
∴∠D=∠BCD=90°,DF=MF,
由折叠的性质可得:∠EMF=∠D=90°,
即FM⊥BE,CF⊥BC,
∵BF平分∠EBC,
∴CF=MF,
∴DF=CF,在△DEF与△CFN中,$\left\{\begin{array}{l}{∠D=∠FCN=90°}\\{DF=CF}\\{∠DFE=∠CFN}\end{array}\right.$,
∴△DFE≌△CFN,
∴EF=FN,
∵∠BFM=90°-∠EBF,∠BFC=90°-∠CBF,
∴∠BFM=∠BFC,
∴BF平分∠MFC;故②正确;
∵∠MFE=∠DFE=∠CFN,
∴∠BFE=∠BFN,
∵∠BFE+∠BFN=180°,
∴∠BFE=90°,
即BF⊥EN,
∴BF垂直平分EN,故①正确;
∵∠BFE=∠D=∠FME=90°,
∴∠EFM+∠FEM=∠FEM+∠FBE=90°,
∴∠EFM=∠EBF,
∵∠DFE=∠EFM,
∴∠DFE=∠FBE,
∴△DEF∽△FEB;故③正确;
∵△DFE≌△CFN,∴BE=BN,
∴△EBN是等腰三角形,
∴∠N不一定等于60°,
故④错误.
故选:A.
点评 此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,证得△DFE≌△CFN是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com