如图,一次函数y1=k1x+2与反比例函数y2=的图象交于点A (4,m)和B(-8,-2),与y轴交于点C
1.k1=_______,k2=______
2.根据函数图象可知,当y1>y2时,x的取值范围是______.
3.过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△CE=3:1时,求点P的坐标
1.k1= ,k2=16
2.-8<x<0或x>4 (3)(4,2)
3.P(4√2,2√2)
解析:(1) 16 (2)-8<x<0或x>4 (3)(4,2)
解:因为一次函数y1=k1x+2与反比例函数y2=的图象交于点A (4,m)和B(-8,-2)
所以联立方程组,则有k1x+2=,即k1x2+2x= k2,即k1x2+2x- k2=0
所以,则有4+(-8)= -,4(-8)=
解得:k1= ,k2=16
(2)由上一问可知,y1>y2,即k1x+2>
解得
解得:-8<x<0或x>4
解:连接OP,交AD于点E
把B(-8,-2)带入y1=k1x+2,得
-2=-8k1+2
k1=1/2
∴y1=1/2x+2
当x=0时,y=2
∴C(0,2)
把点B(-8,-2)带入y2=k2/x,得
k2=16 ∴y2=16/x
再把点A(4,m)带入y2=16/x,得
m=4
∴A(4,4)
S四边形ODAC=1/2X(OC+AD)XOD
=1/2X(2+4)X4
=12
又∵S四边形ODAC:S△ODE=3:1
∴S△ODE=1/2XODXDE=1/2X4XDE=12X1/3,DE=2
∴E(4,2)设直线OE的函数解析式为y=kx(k≠0)
∴2=4k, k=1/2∴y=1/2x
∴ y=1/2x,y2=16/x
解得x=4√2 y=2√2
∴P(4√2,2√2)
科目:初中数学 来源: 题型:
如图,一次函数y1=ax+2与反比例函数y2=的图象交于点A(4,m)和B(-8,-2),与y轴交于点C,与x轴交于点D.
(1)求a、k的值;
(2)过点A作AE⊥x轴于点E,若P为反比例函数图象的位于第一象限部分上的一点,且直线OP分△ADE所得的两部分面积之比为2∶7.请求出所有符合条件的点P的坐标;
(3)在(2)的条件下,请在x轴上找一点Q,使得△PQC的周长最小,并求出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A﹙-2,-5﹚,C﹙5,n﹚,
(1)求反比例函数y2=和一次函数y1=kx+b的表达式;
(2)观察图象,写出使函数值的自变量的取值范围
查看答案和解析>>
科目:初中数学 来源:2013届湖南省八年级反比例函数测试数学试卷(解析版) 题型:解答题
如图,一次函数y1=k1x+2与反比例函数y2=的图象交于点A (4,m)和B(-8,-2),与y轴交于点C
1.k1=_______,k2=______
2.根据函数图象可知,当y1>y2时,x的取值范围是______.
3.过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△CE=3:1时,求点P的坐标
查看答案和解析>>
科目:初中数学 来源:2013届江苏省崇安区八年级下学期期中考试数学卷(一)(解析版) 题型:解答题
如图,一次函数y1=ax+2与反比例函数y2=的图象交于点A(4,m)和B(-8,-2),与y轴交于点C,与x轴交于点D.
(1)求a、k的值;
(2)过点A作AE⊥x轴于点E,若P为反比例函数图象的位于第一象限部分上的一点,且直线OP分△ADE所得的两部分面积之比为2∶7.请求出所有符合条件的点P的坐标;
(3)在(2)的条件下,请在x轴上找一点Q,使得△PQC的周长最小,并求出点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com