A. | 3 | B. | 4 | C. | 6 | D. | 8 |
分析 过C点作CH⊥x轴于H,如图,利用旋转的性质得BA=BC,∠ABC=90°,再证明△ABO≌△BCH得到CH=OB=1,BH=OA=3,则C(4,1),然后把C点坐标代入y=$\frac{k}{x}$(x>0)中可计算出k的值.
解答 解:过C点作CH⊥x轴于H,如图,
∵线段AB绕点B顺时针旋转90°,得到线段BC,
∴BA=BC,∠ABC=90°,
∵∠ABO+∠CBH=90°,∠ABO+∠BAO=90°,
∴∠BAO=∠CBH,
在△ABO和△BCH中
$\left\{\begin{array}{l}{∠AOB=∠BHC}\\{∠BAO=∠CBH}\\{AB=BC}\end{array}\right.$,
∴△ABO≌△BCH,
∴CH=OB=1,BH=OA=3,
∴C(4,1),
∵点C落在函数y=$\frac{k}{x}$(x>0)的图象上,
∴k=4×1=4.
故选B.
点评 本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了三角形全等的判定与性质和反比例函数图象上点的坐标特征.
科目:初中数学 来源: 题型:选择题
A. | 50° | B. | 55° | C. | 60° | D. | 65° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -1.7 | B. | -$\sqrt{2}$ | C. | -$\sqrt{3}$ | D. | -$\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com