分析 (1)①根据题意补全图形即可;
②过B作MB⊥BF,使BM=BF,连接AM、EM,由正方形的性质得出∠ABC=90°,∠1=∠2=45°,AB=BC,由SAS证明△MBE≌△FBE,得出EM=EF,证出∠4=∠5,由SAS证明△AMB≌△CFB,得出AM=FC,∠6=∠2=45°,证出∠MAE=∠6+∠1=90°,在Rt△MAE中,由勾股定理即可得出结论;
(2)过B作MB⊥BE,使BM=BE,连接ME、MF、AM,由SAS证得:△MBF≌△EBF,得出MF=EF,再由SAS证得:△AMB≌△CBE,得出AM=EC,∠BAM=∠BCE=45°,证出∠MAE=∠BAM+∠BAC=90°,得出∠MAF=90°,在Rt△MAF中,由勾股定理即可得出结论.
解答 解:(1)①补全图形,如图1所示:
②AE2+FC2=EF2;理由如下:
过B作MB⊥BF,使BM=BF,连接AM、EM,如图2所示:
∵四边形ABCD是正方形,
∴∠ABC=90°,∠1=∠2=45°,AB=BC,
∵∠3=45°,
∴∠MBE=∠3=45°,
在△MBE和△FBE中,$\left\{\begin{array}{l}{BM=BF}&{\;}\\{∠4=∠3}&{\;}\\{BE=BE}&{\;}\end{array}\right.$,
∴△MBE≌△FBE(SAS),
∴EM=EF,∵∠4=90°-∠ABF,∠5=90°-∠ABF,
∴∠4=∠5,
在△AMB和△CFB中,$\left\{\begin{array}{l}{BM=BF}\\{∠4=∠5}\\{AB=CB}\end{array}\right.$,
∴△AMB≌△CFB(SAS),
∴AM=FC,∠6=∠2=45°,
∴∠MAE=∠6+∠1=90°,
在Rt△MAE中,AE2+AM2=EM2,
∴AE2+FC2=EF2;
(2)AF2+EC2=EF2;理由如下:
过B作MB⊥BE,使BM=BE,连接ME、MF、AM,
∵直线BE绕点B顺时针旋转135°,交直线AC于点F,
∴∠FBE=180°-135°=45°,
∴∠MBF=90°-45°=45°,
∴∠FBE=∠MBF,
在△MBF和△EBF中,$\left\{\begin{array}{l}{BM=BE}\\{∠MBF=∠FBE}\\{BF=BF}\end{array}\right.$,
∴△MBF≌△EBF(SAS),
∴MF=EF,
∵∠MBA=90°-∠ABE,∠EBC=90°-∠ABE,
∴∠MBA=∠EBC,
在△AMB和△CBE中,$\left\{\begin{array}{l}{BM=BE}\\{∠MBA=∠EBC}\\{AB=BC}\end{array}\right.$,
∴△AMB≌△CBE(SAS),
∴AM=EC,∠BAM=∠BCE=45°,
∴∠MAE=∠BAM+∠BAC=90°,
∴∠MAF=90°,
在Rt△MAF中,AF2+AM2=MF2,
∴AF2+EC2=EF2.
点评 本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、旋转的性质、勾股定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com