分析 (1)利用非负数的性质即可解决问题;
(2)如图1中,作OE⊥BD于E,OF⊥AC于F.只要证明△BOD≌△AOC,推出EO=OF(全等三角形对应边上的高相等),推出OK平分∠BKC,再证明∠AKB=∠BOA=90°,即可解决问题;
(3)结论:BM=MN+ON.只要证明△BNH≌△BNO,以及MH=MB即可解决问题;
解答 解:(1)∵(m-2n)2+|n-2|=0,
又∵(m-2n)2≥0,|n-2|≥0,
∴n=2,m=4,
∴点D坐标为(4,2).
(2)如图1中,作OE⊥BD于E,OF⊥AC于F.
∵OA=OB,OD=OC,∠AOB=∠COD=90°,
∴∠BOD=∠AOC,
∴△BOD≌△AOC,
∴EO=OF(全等三角形对应边上的高相等),
∴OK平分∠BKC,
∴∠OBD=∠OAC,易证∠AKB=∠BOA=90°,
∴∠OKE=45°,
∴∠AKO=135°.
(3)结论:BM=MN+ON.
理由:如图2中,过点B作BH∥y轴交MN的延长线于H.
∵OQ=OP,OA=OA,∠AOQ=∠BOP=90°,
∴△AOQ≌△BOP,
∴∠OBP=∠OAQ,
∵∠OBA=∠OAB=45°,
∴∠ABP=∠BAP,
∵NM⊥AQ,BM⊥ON,
∴∠ANM+∠BAQ=90°,∠BNO+∠ABP=90°,
∴∠ANM=∠BNO=∠HNB,
∵∠HBN=∠OBN=45°,BN=BN,
∴△BNH≌△BNO,
∴HN=NO,∠H=∠BON,
∵∠HBM+∠MBO=90°,∠BON+∠MBO=90°,
∴∠HBM=∠BON=∠H,
∴MH=MB,
∴BM=MN+NH=MN+ON.
点评 本题考查等腰直角三角形的性质、全等三角形的判定和性质、角平分线的判定定理等知识,综合性比较强,属于中考压轴题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
月份 | 一 | 二 | 三 | 四 | 五 | 六 |
增减(辆) | +1 | -2 | -1 | +4 | +2 | -6 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com