【题目】如图,边长为5的正方形 的顶点在坐标原点处,点分别在轴、轴的正半轴上,点是边上的点(不与点重合),且与正方形外角平分线交于点.
(1)求证:;
(2)若点坐标为时,①在轴上是否存在点,使得四边形是平行四边形?若存在,求出点的坐标;若不存在,说明理由;
②在平面内是否存在点,使四边形为正方形,若存在,请直接写出点坐标,若不存在,说明理由.
【答案】(1)见解析;(2)①存在, ,理由见解析;②存在,,理由见解析
【解析】
(1)在上截取,连结,利用正方形的性质,外角平分线和等量代换证明,即可证明;
(2)过作交于,则点即为所求,利用平行四边形和正方形的性质证明,则有,进而可求出,从而可确定M的坐标;
(3)过点C作EP的平行线,过点P作CE的平行线,两平行线的交点即为所求Q点,过点Q作交CB与点K, 利用正方形的性质证明,则有进而可求,从而可确定Q的坐标.
(1)证明:在上截取,连结,
∵是正方形,
∴,
,
∴.
又,
.
,
∴.
,
,
.
∵AG平分 ,
,
,
∴,
∴,
∴;
(2)①存在点使四边形为平行四边形,
过作交于,则点即为所求,
∵是正方形,
∴.
∵四边形为平行四边形,
.
∵,
,
∴,
∴,
∴,
∴,
∴在轴上存在点,使四边形的平行四边形;
②存在点Q使四边形为正方形.
过点C作EP的平行线,过点P作CE的平行线,两平行线的交点即为所求Q点,过点Q作交CB与点K,
∵四边形是正方形,
∴ ,
.
又,
.
,
,
,
,
(此时K与点B重合),
,
.
科目:初中数学 来源: 题型:
【题目】在中,,过点作直线,将绕点顺时针旋转得到(点的对应点分别为).
(1)问题发现如图1,若与重合时,则的度数为____________;
(2)类比探究:如图2,设与BC的交点为,当为的中点时,求线段的长;
(3)拓展延伸在旋转过程中,当点分别在的延长线上时,试探究四边形的面积是否存在最小值.若存在,直接写出四边形的最小面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第 x 天的成本 y(元/件)与 x(天)之间的关系如图所示,并连续 60 天均以 80 元/件的价格出售, 第 x 天该产品的销售量 z(件)与 x(天)满足关系式 z=x+15.
(1)第 25 天,该商家的成本是 元,获得的利润是 元;
(2)设第 x 天该商家出售该产品的利润为 w 元.
①求 w 与 x 之间的函数关系式;
②求出第几天的利润最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下
(1)样本中D级的学生人数占全班学生人数的百分比是 ;
(2)扇形统计图中A级所在的扇形的圆心角度数是 ;
(3)请把条形统计图补充完整;
(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面的表格,根据表格解答下列问题:
-2 | 0 | 1 | |
1 | |||
-3 | -3 |
(1)写出,,的值;
(2)在直角坐标系中画出二次函数的图象;并根据图象写出使不等式成立时的取值范围;
(3)设该图象与轴两个交点分别为,,与轴交点为,直接写出的外心坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:
(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为 ;
(2)当轿车与货车相遇时,求此时x的值;
(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一个两位数,用表示十位上的数,用表示个位上的数.
(1)用含,的式子表示这个两位数;
(2)把这个两位数个位上的数字与十位上的数字交换位置,得到一个新的两位数.
①若原数个位上的数是十位上的数的3倍,且新数与原数的差是36,求原来的两位数是多少?
②列式表示所得新数的平方与原数的平方的差(结果要化简),并判断其是11的倍数吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A、B、C、D四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.
表1:四种款式电脑的利润
电脑款式 | A | B | C | D |
利润(元/台) | 160 | 200 | 240 | 320 |
表2:甲、乙两店电脑销售情况
电脑款式 | A | B | C | D |
甲店销售数量(台) | 20 | 15 | 10 | 5 |
乙店销售数量(台)8 | 8 | 10 | 14 | 18 |
试运用统计与概率知识,解决下列问题:
(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为 ;
(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com