精英家教网 > 初中数学 > 题目详情

如图,抛物线y=数学公式x2-m2(m>0)与x轴相交于点A、C,与y轴相交于点P,连结PA、PC,过点A画PC的平行线分别交y轴和抛物线于点B、C1,连结CB并延长交抛物线于点A1,在过点A1画AC1的平行线分别交y轴和抛物线于点B1、C2,连结C1B1并延长交抛物线于点A2,…,依次得到四边形,记四边形AnBnCnBn-1的面积为Sn
(1)求证:四边形ABCP是菱形.
(2)设∠A1B1C1=a,且90°<a<120°,求m的取值范围.
(3)当m=1时,
①填表:
序号S1S2S3Sn
四边形的面积
②是否存在2个四边形,他们的面积Sp、Sq满足:数学公式(p<q)?若存在,求p、q的值;若不存在,请说明理由.

解:(1)∵AB∥PC,AP∥BC,
∴四边形ABCP是平行四边形,
∵AP=CP,
∴四边形ABCP是菱形;

(2)∵AC1∥A1C2,A1C∥A2C1
∴∠A1B1C1=∠ABC,
∵四边形ABCP是菱形,
∴∠ABC=2∠OBC,
∵90°<∠A1B1C1<120°,
∴45°<∠OBC<60°,
∵B(0,m2),C(2m,0),
∴tan∠OBC=
∴1<,解得<m<2;
(3)①
序号S1 S2 S3 Sn
四边形的面积 16 36 64 4(n+1)2
②∵Sp=4(p+1)2,Sq=4(q+1)2
∴Sp•Sq=24(p+1)2(q+1)2=214
∴(p+1)2(q+1)2=210
∴(p+1)(q+1)=25


分析:(1)根据AB∥PC,AP∥BC可知四边形ABCP是平行四边形,再由AP=CP即可得出结论;
(2)由AC1∥A1C2,A1C∥A2C1,可知∠A1B1C1=∠ABC,再由四边形ABCP是菱形可知∠ABC=2∠OBC,因为90°<∠A1B1C1<120°故45°<∠OBC<60°,再由B(0,m2),C(2m,0)可知tan∠OBC=,故可得出结论;
(3)①根据梯形的面积公式即可得出结论.根据Sp=4(p+1)2,Sq=4(q+1)2即可得出结论.
点评:本题考查的是二次函数综合题,根据题意找出概率是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,AO.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y
0(填“>”“=”或“<”号).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,抛物线y=x2+(k2+1)x+k+1的对称轴是直线x=-1,且顶点在x轴上方.设M是直线x=-1左侧抛物线上的一动点,过点M作x轴的垂线MG,垂足为G,过点M作直线x=-1的垂线MN,垂足为N,直线x=-1与x轴的交于H点,若M点的横坐标为x,矩形MNHG的周长为l.
(1)求出k的值;
(2)写出l关于x的函数解析式;
(3)是否存在点M,使矩形MNHG的周长最小?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•扬州)如图,抛物线y=x2-2x-8交y轴于点A,交x轴正半轴于点B.
(1)求直线AB对应的函数关系式;
(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=x2-2x-3与x轴分别交于A,B两点.
(1)求A,B两点的坐标;
(2)求抛物线顶点M关于x轴对称的点M′的坐标,并判断四边形AMBM′是何特殊平行四边形.(不要求说明理由)

查看答案和解析>>

同步练习册答案