精英家教网 > 初中数学 > 题目详情
如图,直线L1的函数解析式为y=-2x+4,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.
(1)求D点坐标;
(2)求直线l2的函数解析式;
(3)在直线l2上是否存在异于点C的另一点P,使得△ADP的面积与△ADC的面积相等?如果存在,请求出P坐标;如果不存在,请说明理由.
分析:(1)利用y=0,求出x的值,即可得出D点坐标;
(2)利用待定系数法求出一次函数解析式即可;
(3)利用△ADP面积与△ADC的面积相等,得出点P的纵坐标与点C的纵坐标的绝对值相等,即可求出答案即可.
解答:解:(1)对于函数:y=-2x+4,令y=0,
∴-2x+4=0,
x=2,
即D点坐标为:(2,0);

(2)设l2的解析式为:y=kx+b,
由图象可知:
5k+b=0
4k+b=-1

解之得:
k=1
b=5

∴直线l2的解析式为:y=x-5;

(3)直线l2上存在点P使得△ADP面积与△ADC的面积相等,
设C点坐标为:(m,n),则
-2m+4=n
m-5=n

解得:
m=3
n=-2

∴C(3,-2)
∵S△ADP=S△ADC
∴点P的纵坐标与点C的纵坐标的绝对值相等,
由图可知点P在第一象限,
∴当y=2时,x-5=2,
∴x=7,
即P点坐标为:(7,2).
点评:此题主要考查了一次函数的综合应用以及待定系数法求一次函数解析式,根据已知结合图形得出点P的纵坐标与点C的纵坐标的绝对值相等是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线l1的函数解析式为y=
12
x+1
,且l1与x轴交于点D,直线l2经过定点A,B,直线l1与l2交于点C.
(1)求直线l2的函数解析式;
(2)求△ADC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线l1的函数解析式为y=2x-2,直线l1与x轴交于点D.直线l2:y=kx+b与x轴交于点A,且经过点B,如图所示.直线l1、l2交于点C(m,2).
(1)求点D、点C的坐标;
(2)求直线l2的函数解析式;
(3)求△ADC的面积;
(4)利用函数图象写出关于x、y的二元一次方程组
y=2x-2
y=kx+b
的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线l1的函数关系式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.
(1)求点D的坐标;
(2)求直线l2的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线l1的函数关系式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.
(1)求点D的坐标;
(2)求直线l2的函数关系式.

查看答案和解析>>

同步练习册答案