精英家教网 > 初中数学 > 题目详情
6.阅读下面的解答过程,然后作答:
有这样一类题目:将$\sqrt{a+2\sqrt{b}}$化简,若你能找到两个数 m和n,使m2+n2=a 且 mn=$\sqrt{b}$,则a+2$\sqrt{b}$ 可变为m2+n2+2mn,即变成(m+n)2,从而使得$\sqrt{a+2\sqrt{b}}$     化简.
例如:∵5+2$\sqrt{6}$=3+2+2$\sqrt{6}$=($\sqrt{3}$)2+($\sqrt{2}$)2+2$\sqrt{6}$=($\sqrt{3}$+$\sqrt{2}$)2
∴$\sqrt{5+2\sqrt{6}}$=$\sqrt{(\sqrt{3}+\sqrt{2})^{2}}$=$\sqrt{3}$+$\sqrt{2}$
请你仿照上例解下面问题(1)$\sqrt{4+2\sqrt{3}}$(2)$\sqrt{7-2\sqrt{10}}$.

分析 (1)利用完全平方公式把4+2$\sqrt{3}$化为(1+$\sqrt{3}$)2,然后利用二次根式的性质化简即可.
(2)利用完全平方公式把7-2$\sqrt{10}$化为($\sqrt{5}$-$\sqrt{2}$)2然后利用二次根式的性质化简即可.

解答 解:(1)∵4+2$\sqrt{3}$=1+3+2$\sqrt{3}$=12+$(\sqrt{3})^{2}$+2$\sqrt{3}$=(1+$\sqrt{3}$)2
∴$\sqrt{4+2\sqrt{3}}$=$\sqrt{(1+\sqrt{3})^{2}}$=1+$\sqrt{3}$;
(2)$\sqrt{7-2\sqrt{10}}$=$\sqrt{(\sqrt{5})^{2}+(\sqrt{2})^{2}-2×\sqrt{5}×\sqrt{2}}$=$\sqrt{(\sqrt{5}-\sqrt{2})^{2}}$=$\sqrt{5}$-$\sqrt{2}$.

点评 本题主要考查了二次根式的性质与化简,解题的关键是熟记掌握完全平方公式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图1,直线l交x轴于点D,与反比例函数y=$\frac{k}{x}$(k>0)的图象交于两点A、E、AG⊥x轴,垂足为点G,S△AOG=3
(1)k=6;
(2)求证:AD=CE;
(3)如图2,若当E为平行四边形OABC的对角线AC的中点,求平行四边形OABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,一次函数y=x+2与x轴交于点A,与y轴交于点B,一抛物线的顶点在直线AB上,形状与函数y=-$\frac{1}{2}$x2图象相同,它与x轴分别交于点C、D(点C在点D的左侧),抛物线的顶点为点E.
(1)写出点A、B的坐标;
(2)当点C与点A关于原点对称时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,已知点A(x1,0),B(x2,0),其中x1,x2是方程x2-8x+12=0的两根,且x1<x2,C(3,$\sqrt{3}$).

(1)求点A、B的坐标.
(2)作CH⊥AB于H,设E为OC延长线上一点,连EH交线段BC于F,问是否存在点E,使△CHF与△BEF相似?如果存在,求OE的长,如果不存在,说明理由.
(3)如图2,取AB的中点D,问在直线CD上是否存在点P,使△ABP是直角三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,直线y=kx+b(b<0)与抛物线y=ax2相交于点A(x1,y1),B(x2,y2)两点,抛物线y=ax2经过点(4,-2)
(1)求出a的值;
(2)若x1•OB-y2•OA=0,求b的值;
(3)将抛物线向右平移一个单位,再向上平移n的单位.若在第一象限的抛物线上存在这样的不同的两点M、N,使得M、N关于直线y=x对称,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列各式计算正确的是(  )
A.6x6÷2x2=3x2B.8x8÷4x2=2x6C.a3÷a3=0D.$\frac{2}{3}$a5b÷$\frac{3}{2}$a5b=1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在直角坐标系中,△ABC的顶点A(-2,0),B(2,4),C(4,0).
(1)求△ABC的面积;
(2)点D为y轴负半轴上一动点,连接BD交x轴于点E,是否存在点D使得S△ADE=S△BCE?若存在,请求出点D的坐标;若不存在,请说明理由;
(3)若点A、B、C为平行四边形的三个顶点,试写出第四个顶点P的坐标,你的答案唯一吗?
(4)求出(3)中平行四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.一个多边形除去一个内角外,其余的(n-1)个内角的和是2580°,则这个多边形是十七边形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.若x-y>x,且x+y<y,则下列不等式中正确的是(  )
A.xy<0B.$\frac{x}{y}$>0C.x+y>0D.x-y<0

查看答案和解析>>

同步练习册答案