精英家教网 > 初中数学 > 题目详情
13.如图,在Rt△ABC中,∠BAC=90°,AB>AC,射线AM平分∠BAC.
(1)设AM交BC于点D,DE⊥AB于点E,DF⊥AC于点F,连接EF.有以下三种“判断”:
判断1:AD垂直平分EF.
判断2:EF垂直平分AD.
判断3:AD与EF互相垂直平分.
你同意哪个“判断”?简述理由;
(2)若射线AM上有一点N到△ABC的顶点B,C的距离相等,连接NB,NC.
①请指出△NBC的形状,并说明理由;
②当AB=11,AC=7时,求四边形ABNC的面积.

分析 (1)结论:判断3正确.只要证明四边形AEDF是正方形即可解决问题.
(2)①△BCN是等腰直角三角形.如图作NE⊥AB于E,FN⊥AC于F.只要证明△NEB≌△NFC,四边形AENF是正方形即可解决问题.
②由△NEB≌△NFC,推出S△NEB=S△NFC,推出S四边形ABNC=S正方形AENF,由此即可解决问题.

解答 解:(1)如图,判断3正确.理由如下:

∵∠BAC=90°,DE⊥ABDF⊥AC,
∴DE=DF,∴∠AED=∠AFD=∠EAF=90°,
∴四边形AEDF是矩形,∵DE=DF,
∴四边形AEDF是正方形,
∴AD与EF互相垂直平分.
故判断3正确.

(2)①结论:△BCN是等腰直角三角形.理由如下:
如图作NE⊥AB于E,FN⊥AC于F.

∵MA是∠BAC的平分线,
∴NE=NF,
在Rt△NEB和Rt△NFC中,
$\left\{\begin{array}{l}{NB=NC}\\{NE=NF}\end{array}\right.$,
∴△NEB≌△NFC,
∴BE=CF,∠BNE=∠CNF,
易知四边形AENF是正方形,
∴AE=AF,∠BNC=∠ENF=90°,
∴△BNC是等腰直角三角形.

②∵AB+AC=(AE+BE)+(AF-CF)=2AE=18,
∴AE=AF=9,
∵△NEB≌△NFC,
∴S△NEB=S△NFC
∴S四边形ABNC=S正方形AENF=92=81.

点评 本题考查线段的垂直平分线的性质定理、角平分线的性质定理、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.有理数a,b在数轴上的位置如图所示,则下列结论正确的是(  )
A.a-b<b<a<a+bB.a-b<b<a+b<aC.b<a+b<a<a-bD.a+b<b<a<a-b

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在△ABC中,已知D、E、F分别是AB、BC、CA的中点.
(1)求证:△DBE≌△FEC;
(2)判断四边形ADEF的形状,并加以证明;
(3)在题目的已知条件中,添加一个适当的条件后,使四边形ADEF成为菱形,请写出你添加的条件,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,抛物线y=-$\frac{3}{8}$x2-$\frac{3}{4}$x+3与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点D在x轴负半轴上,且OD=$\frac{3}{2}$,连接CD,已知E(0,-1).
(1)求直线AC的解析式;
(2)如图1,F为线段AC上一动点,过F作x轴的平行线交CD于点G,当△EFG面积最大时,在y轴上取一点M,在抛物线对称轴上取一点N,求FM+MN+NB的最小值;
(3)如图2,点P在线段OC上且OP=OB,连接BP,将△OBP沿x轴向左平移,得到△O′B′P′,当点P′恰好落在AC上时,将△O′P′A绕点P′逆时针旋转a(0°<a<180°),记旋转中的△O′P′A为△O″P′A′,在旋转过程中,设直线O″A′分别交x轴和直线AC于H、I两点,是否存在这样的H、I使△AHI为等腰三角形?若存在,求此时AI的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.
请解决下列问题:
(1)已知点M,N是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;
(2)如图2,若点F、M、N、G分别是AB、AD、AE、AC边上的中点,点D,E是线段BC的勾股分割点,且EC>DE>BD,求证:点M,N是线段FG的勾股分割点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.抛物线y=ax2+bx+c(a≠0)交x轴于A、B两点,交y轴于点C,且满足OA=OC=$\frac{5}{2}$OB,△ABC的面积为$\frac{15}{2}$.
(1)求抛物线的解析式;
(2)点E是直线AC上方第二象限内一点,点F在AC上,且EF⊥AC,设点E的横坐标为t,EF的长为d,tan∠CAE=$\frac{1}{2}$,用含t的式子表示d;
(3)在(2)的条件下,连接OE,交抛物线于点H,点Q在x轴上,∠HQA+∠CAE=45°,AE=QH,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知二次函数y=x2+2x+$\frac{k-1}{2}$与x轴有两个交点,且k为正整数.
(1)求k的值;
(2)当二次函数y=x2+2x+$\frac{k-1}{2}$图象经过原点时,直线y=3x+2与之交于A、B两点,若M是抛物线上在直线y=3x+2下方的一个动点,△MAB面积是否存在最大值?若存在,请求出M点坐标,并求出△MAB面积最大值;若不存在,请说明理由.
(3)将(2)中的二次函数图象x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象x轴上方的部分组成一个新图象.若直线y=kx+2(k>0)与该新图象恰好有三个公共点,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某公司决定利用仅有的349个甲种部件和295个乙种部件组装A、B两种型号的简易板房共50套捐赠给灾区.已知组装一套A型号简易板房需要甲种部件8个和乙种部件4个,组装一套B型号简易板房需要甲种部件5个和乙种部件9个.该公司在组装A、B两种型号的简易板房时,共有多少种组装方案?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,已知正五边形ABCDE内接于⊙O,则劣弧AB的度数是(  )
A.45°B.60°C.72°D.90°

查看答案和解析>>

同步练习册答案