精英家教网 > 初中数学 > 题目详情
精英家教网如图,四边形ABCD中,BC>CD>DA,O为AB中点,且∠AOD=∠COB=60°,求证:CD+AD>BC.
分析:在OC上截取OE=OD,可以证明△ODE是等边三角形,然后利用边角边定理证明△AOD与△BOE全等,根据全等三角形对应边相等可得AD=BE,再根据同一个三角形中大角对大边可得CD>CE,然后利用三角形的任意两边之和大于第三边即可证明.
解答:精英家教网证明:如图,在OC上截取OE=OD,连接DE,BE,
∵∠EOD=180°-∠AOD-∠COB=180°-60°-60°=60°,
∴△DOE是等边三角形,
又∵O为AB中点,
∴OA=OB,
在△AOD与△BOE中,
OA=OB
∠AOD=∠COB=60°
OD=OE

∴△AOD≌△BOE(SAS),
∴AD=BE,
在△DEC中,∠CED=180°-60°=120°,
∴∠CED>∠CDE,
∴CD>CE,
∴AD+CD>BE+CE>BC,
即CD+AD>BC.
点评:本题考查了三角形的三边关系,全等三角形的判定与性质,等边三角形的判定与性质,同一个三角形中大角对大边的性质,作辅助线构造出等边三角形以及全等三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案