精英家教网 > 初中数学 > 题目详情
若m,n为实数,则下列判断中正确的是(  )
A.若|m|=|n|,则m=nB.若m>n,则m2>n2
C.若m2=n2,则m=nD.
3m
=
3n
,则m=n
A、若|m|=|n|,则m=±n,故选项错误;
B、若m>n,则不一定m2>n2,反例:m=1,n=-2,1>-2,则1<4,即m2<n2,故选项错误;
C、若m2=n2,则m=±n,故选项错误;
D、
3m
=
3n
,则m=n,故选项正确.
故选D.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1.
若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.
解决问题:
(1)计算:{3,1}+{1,2};{1,2}+{3,1};
(2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置还是点B吗?在图1中画出四边形OABC.
②证明四边形OABC是平行四边形.
(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为 3+(-2)=1.
若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.
解决问题:
(1)计算:{3,1}+{1,2};{1,2}+{3,1}.
(2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点B吗?在图精英家教网中画出四边形OABC.
②证明四边形OABC是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区二模)操作探究:
一动点沿着数轴向右平移5个单位,再向左平移2个单位,相当于向右平移3个单位.用实数加法表示为 5+(-2)=3.
若平面直角坐标系xOy中的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.
(1)计算:{3,1}+{1,2};
(2)若一动点从点A(1,1)出发,先按照“平移量”{2,1}平移到点B,再按照“平移量”
{-1,2}平移到点C;最后按照“平移量”{-2,-1}平移到点D,在图中画出四边形ABCD,并直接写出点D的坐标;
(3)将(2)中的四边形ABCD以点A为中心,顺时针旋转90°,点B旋转到点E,连结AE、BE若动点P从点A出发,沿△AEB的三边AE、EB、BA平移一周. 请用“平移量”加法算式表示动点P的平移过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的两个一元二次方程:
方程:x2+(2k-1)x+k2-2k+
13
2
=0
    ①
方程:x2-(k+2)x+2k+
9
4
=0
      ②
(1)若方程①、②都有实数根,求k的最小整数值;
(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是
(填方程的序号),并说明理由;
(3)在(2)的条件下,若k为正整数,解出有实数根的方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:013

若a>b,且c为实数,则下式一定成立的是

[    ]

查看答案和解析>>

同步练习册答案