精英家教网 > 初中数学 > 题目详情

如图:设凸四边形ABCD的顶点在同一个圆上,另一个圆的圆心O在边AB上,且与四边形的其余的三条边相切,求证:AD+BC=AB.

解:设E、F、G为三边的切点,将△OFC绕O点旋转到△OEH,H在射线ED上,
设θ=∠OCF=∠OHE=∠OCG,
∵四边形ABCD内接于圆,
∴∠A=180°-2θ,∠AOH=180°-(θ+180°-2θ)=θ=∠AHO,
因此,OA=AH=AE+FC=AE+GC…①
用同样的方法,即将△OFD绕O点顺时针旋转到△OGK,K在GC上,
得到OB=BK=BG+FD=BG+ED…②,
①+②得AB=AD+BC.
分析:利用旋转的性质得出∠AOH=∠AHO,进而得出OA=AH=AE+FC=AE+GC,进而求出OB=BK=BG+FD=BG+ED,即可得出答案.
点评:此题主要考查了旋转的性质,通过旋转将问题“化整为零”,然后再“各个击破”是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网设凸四边形ABCD的对角线AC、BD的交点为M,过点M作AD的平行线分别交AB、CD于点E、F,交BC的延长线于点O,P是以O为圆心OM为半径的圆上一点(位置如图所示),求证:∠OPF=∠OEP.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD,分别过C,D两点,作边BC,AD的垂线,设两条垂线的交点为P.
求证:∠PAD=∠PBC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD,分别过C,D两点,作边BC,AD的垂线,设两条垂线的交点为P.
求证:∠PAD=∠PBC.

查看答案和解析>>

科目:初中数学 来源:四川省竞赛题 题型:证明题

如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD,分别过C,D两点,作边BC,AD的垂线,设两条垂线的交点为P。过点P作PQ⊥AB于Q。求证:∠PAD=∠PBC
 

查看答案和解析>>

同步练习册答案