精英家教网 > 初中数学 > 题目详情
如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.
(1)求x的取值范围;
(2)若△ABC为直角三角形,求x的值;
(3)探究:△ABC的最大面积?
(1)∵在△ABC中,AC=1,AB=x,BC=3-x.
1+x>3-x
1+3-x>x

解得1<x<2;

(2)①若AC为斜边,则1=x2+(3-x)2,即x2-3x+4=0,无解,
②若AB为斜边,则x2=(3-x)2+1,解得x=
5
3
,满足1<x<2,
③若BC为斜边,则(3-x)2=1+x2,解得x=
4
3
,满足1<x<2,
x=
5
3
x=
4
3


(3)在△ABC中,作CD⊥AB于D,
设CD=h,△ABC的面积为S,则S=
1
2
xh

①若点D在线段AB上,
1-h2
+
(3-x)2-h2
=x

(3-x)2-h2=x2-2x
1-h2
+1-h2

x
1-h2
=3x-4

∴x2(1-h2)=9x2-24x+16,
即x2h2=-8x2+24x-16.
∴S2=
1
4
x2h2=-2x2+6x-4=-2(x-
3
2
2+
1
2
4
3
≤x<2),
x=
3
2
时(满足
4
3
≤x<2)S2取最大值
1
2
,从而S取最大值
2
2

②若点D在线段MA上,
(3-x)2-h2
-
1-h2
=x

同理可,得
S2=
1
4
x2h2=-2x2+6x-4
=-2(x-
3
2
2+
1
2
(1<x≤
4
3
),
易知此时S<
2
2

综合①②得,△ABC的最大面积为
2
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,点A是直线y=kx(k>0,且k为常数)上一动点,以A为顶点的抛物线y=(x-h)2+m交直线y=kx于另一点E,交y轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C.(点A,E,F两两不重合)
(1)请写出h与m之间的关系;(用含的k式子表示)
(2)当点A运动到使EF与x轴平行时(如图2),求线段AC与OF的比值;
(3)当点A运动到使点F的位置最低时(如图3),求线段AC与OF的比值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,AB=2,AD=4,以AB的垂直平分线为x轴,AB所在的直线为y轴,建立如图所示的平面直角坐标系.
(1)求点的坐标:A______,B______,C______,______,AD的中点E______;
(2)求以E为顶点,对称轴平行于y轴,并且经过点B,C的抛物线的解析式;
(3)求对角线BD与上述抛物线除点B以外的另一交点P的坐标;
(4)△PEB的面积S△PEB与△PBC的面积S△PBC具有怎样的关系?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值;
(3)如图2,过点E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c经过(-1,10),(1,4),(2,7)三点,求这个函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以△ABC的边AC为直径的半圆交AB于D,三边长a,b,c能使二次函数y=
1
2
(c+a)x2-bx+
1
2
(c-a)
的顶点在x轴上,且a是方程z2+z-20=0的一个根.
(1)证明:∠ACB=90°;
(2)若设b=2x,弓形面积S弓形AED=S1,阴影部分面积为S2,求(S2-S1)与x的函数关系式;
(3)在(2)的条件下,当b为何值时,(S2-S1)最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,某中学生推铅球,铅球在点A处出手,在点B处落地,它的运行路线满足y=-
1
12
x2+
2
3
x+
5
3
,则这个学生推铅球的成绩是______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+2x-3与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的顶点坐标;
(2)设直线y=x+3与y轴的交点是D,在线段AD上任意取一点E(不与A、D重合),经过A、B、E三点的圆交直线AC于点F,试判断△BEF的形状.

查看答案和解析>>

同步练习册答案