精英家教网 > 初中数学 > 题目详情

如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.

(1)当P异于A.C时,请说明PQ∥BC;

(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?

 

【答案】

解:(1)∵四边形ABCD是菱形,且菱形ABCD的边长为2,

∴AB=BC=2,∠BAC=∠DAB。

又∵∠DAB=60°,∴∠BAC=∠BCA=30°。

如图1,连接BD交AC于O。

 

 

∵四边形ABCD是菱形,

∴AC⊥BD,OA=AC。

∴OB=AB=1。∴OA=,AC=2OA=2

运动ts后,AP=t,AO=t,∴

又∵∠PAQ=∠CAB,∴△PAQ∽△CAB.∴∠APQ=∠ACB.

∴PQ∥BC.

(2)如图2,⊙P与BC切于点M,连接PM,则PM⊥BC。

 

 

在Rt△CPM中,∵∠PCM=30°,∴PM=

由PM=PQ=AQ=t,即=t,解得t=

此时⊙P与边BC有一个公共点。

如图3,⊙P过点B,此时PQ=PB,

 

 

∵∠PQB=∠PAQ+∠APQ=60°

∴△PQB为等边三角形。∴QB=PQ=AQ=t。∴t=1。

∴当时,⊙P与边BC有2个公共点。

如图4,

 

 

⊙P过点C,此时PC=PQ,即 =t

∴t=

∴当1≤t≤时,⊙P与边BC有一个公共点。

当点P运动到点C,即t=2时,Q、B重合,⊙P过点B,

此时,⊙P与边BC有一个公共点。

综上所述,当t=或1≤t≤或t=2时,⊙P与菱形ABCD的边BC有1个公共点;当时,⊙P与边BC有2个公共点。

【解析】直线与圆的位置关系,菱形的性质,含30°角直角三角形的性质,相似三角形的判定和性质,平行的判定,切线的性质,等边三角形的判定和性质。

【分析】(1)连接BD交AC于O,构建直角三角形AOB.利用菱形的对角线互相垂直、对角线平分对角、邻边相等的性质推知△PAQ∽△CAB;然后根据“相似三角形的对应角相等”证得∠APQ=∠ACB;最后根据平行线的判定定理“同位角相等,两直线平行”可以证得结论。

(2)分⊙P与BC切于点M,⊙P过点B,⊙P过点C和点P运动到点C四各情况讨论即可。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD的对角线AC=6,BD=8,∠ABD=α,则下列结论正确的是(  )
A、sinα=
4
5
B、cosα=
3
5
C、tanα=
4
3
D、tanα=
3
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系.动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E.
(1)求出经过A、D、C三点的抛物线解析式;
(2)是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由;
(3)设AE长为y,试求y与t之间的函数关系式;
(4)若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD的边长为8cm,∠B=60°,P、Q同时从A点出发,点P以1cm/秒的速度沿A→C→B的方向运动,点Q以2cm/秒的速度沿A→B→C→D的方向运动.当点Q运动到D点时,P、Q两点同时停止运动.设P、Q运动的时间为x秒,△APQ与△ABC重叠部分的面积为ycm2(规定:点和线段是面积为0的三角形).
(1)当x=
8
8
秒时,P和Q相遇;
(2)当x=
(12-4
3
(12-4
3
秒时,△APQ是等腰直角三角形;
(3)当x=
32
3
32
3
秒时,△APQ是等边三角形;
(4)求y关于x的函数关系式,并求y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,菱形ABCD的周长为8cm,∠ABC:∠BAD=2:1,对角线AC、BD相交于点O,求BD及AC的长.

查看答案和解析>>

同步练习册答案