精英家教网 > 初中数学 > 题目详情

如图,抛物线与x轴交于A、C两点,与y轴交于B点.

(1)求△AOB的外接圆的面积;

(2)若动点P从点A出发,以每秒1个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒0.5个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似?

(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.

问:是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.

 

【答案】

(1)25π;(2)t=以A、P、Q为顶点的三角形与△OAB相似;(3)不存在这样的点M,使得四边形OMNB恰为平行四边形,理由见解析.

【解析】

试题分析:(1)先求出A,B坐标,则△AOB的外接圆的半径为AB,根据圆的面积公式求解即可;

(2)根据相似三角形对应边的比相等列出比例式,求解即可;

(3)若四边形OMNB为平行四边形,根据平行四边形的性质得出MN=OB=8,据此列出方程(x-8)-(x2x-8)=8,由判别式△<0即可判断出不存在这样的点M,使得四边形OMNB恰为平行四边形.

试题解析:(1)∵,

∴当y=0时,=0,解得x=6或﹣8,

∴A(6,0),B(0,-8)

∴OA=6,OB=8,∴AB=10

∴S=π·(5)2=25π.

(2)AP=t,AQ=10-0.5t,易求AC=8,∴0≤t≤8

若△APQ∽△AOB,则.∴t=

若△AQP∽△AOB,则.∴t=>8(舍去,).

∴当t=时,以A、P、Q为顶点的三角形与△OAB相似.

(3)直线AB的函数关系式为 .

∵MN∥y轴

∴设点M的横坐标为x,则M(x,x-8),N(x,x2x-8).

若四边形OMNB为平行四边形,则MN=OB=8

∴(x-8)-(x2x-8)=8

即x2-6x+12=0

∵△<0,∴此方程无实数根,

∴不存在这样的点M,使得四边形OMNB恰为平行四边形.

考点:二次函数综合题.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图抛物线与x轴交于A、B两点,与y轴交于点C(0.).且对称抽x=l.
(1)求出抛物线的解析式及A、B两点的坐标;
(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3.若存在,求出点D的坐标;若不存在.说明理由(使用图1);
(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).

查看答案和解析>>

科目:初中数学 来源: 题型:

综合与探究:如图,抛物线与x轴交于A,B两点(点B在点A的右侧)与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q

(1)求点A,B,C的坐标。

(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N。试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由。

(3)当点P在线段EB上运动时,是否存在点 Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(四川广安卷)数学 题型:解答题

如图抛物线与x轴交于A、B两点,与y轴交于点C(0.).且对称抽x=l.
(1)求出抛物线的解析式及A、B两点的坐标;
(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3.若存在,求出点D的坐标;若不存在.说明理由(使用图1);
(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).

查看答案和解析>>

科目:初中数学 来源:2013-2014学年甘肃省九年级上学期期末考试数学试卷(解析版) 题型:解答题

如图,抛物线x轴交于AB两点,y轴交于点C

1)分别求出点ABC的坐标;

2)设抛物线的顶点为M,求四边形ABMC的面积.

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(山西卷)数学(解析版) 题型:解答题

综合与探究:如图,抛物线与x轴交于A,B两点(点B在点A的右侧)与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q。

(1)求点A,B,C的坐标。

(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N。试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由。

(3)当点P在线段EB上运动时,是否存在点 Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案