【题目】已知一副直角三角板如图放置,其中BC=6,EF=8,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为_____.
科目:初中数学 来源: 题型:
【题目】画图题:
(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线CE和平行线CH.
(2)判断CE、CH的位置关系是 .
(3)连接AC和BC,若小正方形的边长为a,求三角形ABC的面积.(用含a的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化.若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段PB的长为何值时,△PQR与△BOC相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,AD=8.动点E,F同时分别从点A,B出发,分别沿着射线AD和射线BD的方向均以每秒1个单位的速度运动,连接EF,以EF为直径作⊙O交射线BD于点M,设运动的时间为t.
(1)当点E在线段AD上时,用关于t的代数式表示DE,DM.
(2)在整个运动过程中,
①连结CM,当t为何值时,△CDM为等腰三角形.
②圆心O处在矩形ABCD内(包括边界)时,求t的取值范围,并直接写出在此范围内圆心运动的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图(图1)的信息回答下列问题:
(1)本次调查的学生总数为________人,被调查学生的课外阅读时间的中位数是________小时,众数是_________小时;
(2)请你补全条形统计图,在扇形统计图中,课外阅读时间为小时的扇形的圆心角度数是_________;
(3)若全校九年级共有学生人,估计九年级一周课外阅读时间为小时的学生有多少人?
(4)若学校选取、、、四人参加阅读比赛,两人一组分为两组,求与是一组的概率,(列表或树状图)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(8,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).
(1)求A、B两点的坐标;
(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤12),求S与t的函数表达式;
(3)在(2)的条件下,t为何值时,S最大?并求出S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接BD、DE.
(1)求DE是⊙O的切线;
(2)设△CDE的面积为S1,四边形ABED的面积为S2,若S2=5S1,求tan∠BAC的值;
(3)在(2)的条件下,连接AE,若⊙O的半径为2,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形和正方形, 连接,当时, 与的关系是?
如图2,将正方形绕点顺时针旋转,中结论是否仍然成立?若成立,请给出证明:若不成立,请说明理由;
已知,在旋转过程中,若直线平分,请画出相应的图形,并写出其中一种情形时长的思路.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com