精英家教网 > 初中数学 > 题目详情

【题目】解下列方程:

(1)x(x﹣1)=1﹣x

(2)x2+2x﹣35=0

(3)4x2﹣3=12x

【答案】(1) x1=1,x2=﹣1;(2) x1=﹣7,x2=5;(3) x1=

【解析】

(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可

(2)分解因式,即可得出两个一元一次方程,求出方程的解即可

(3)移项后求出b2-4ac的值,再代入公式求出即可.

(1)x(x﹣1)=1﹣x

x(x﹣1)+(x﹣1)=0,

(x﹣1)(x+1)=0,

x﹣1=0,x+1=0,

x1=1,x2=﹣1;

(2)x2+2x﹣35=0,

(x+7)(x﹣5)=0,

x+7=0,x﹣5=0,

x1=﹣7,x2=5;

(3)4x2﹣3=12x,

4x2﹣12x﹣3=0,

b2﹣4ac=(﹣12)2﹣4×4×(﹣3)=192,

x=

x1=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差yx称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”

(1)①点A(1,3) 的“坐标差”为

②抛物线y=x2+3x+3的“特征值”为

(2)某二次函数y=x2+bx+c(c≠0) 的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等。

①直接写出m= (用含c的式子表示)

②求此二次函数的表达式。

(3)如图,在平面直角坐标系xOy中,以M(2,3)为圆心,2为半径的圆与直线y=x相交于点DE请直接写出⊙M的“特征值”为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD与四边形A′B′C′D′是位似图形,且它们的对应边的比为3:4,则四边形ABCD与四边形A′B′C′D′的周长之比为______,面积之比为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆柱,中间是一个圆柱(如图,单位:mm).电镀时,如果每平方米用锌0.11kg,要电镀1000个这样的锚标浮筒需要用多少锌?(精确到1kg)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,排球运动员站在点O处练习发球,将球从O点正上方2mA处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(xk)2+h.已知球与O点的水平距离为6m时,达到最高2.6m,球网与O点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )

A. 球不会过网 B. 球会过球网但不会出界

C. 球会过球网并会出界 D. 无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ACBC,∠ACB90°,点DBC上,BD6CD2,点PAB上的动点,则PC+PD的最小值是(  )

A.7B.8C.9D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C,点C关于抛物线对称轴的对称点为点D,抛物线顶点为H(1,2).

(1)求抛物线的解析式;

(2)P为直线AD上方抛物线的对称轴上一动点,连接PA,PD.当SPAD=3,若在x轴上存在一动点Q,使PQ+QB最小,求此时点Q的坐标及PQ+QB的最小值;

(3)若点E为抛物线上的动点,点G,F为平面内的点,以BE为边构造以B,E,F,G为顶点的正方形,当顶点F或者G恰好落在y轴上时,求点E的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:如图,点为线段外一动点,且,若,连接,求的最大值.解决方法:以为边作等边,连接,推出,当点的延长线上时,线段取得最大值

问题解决:如图,点为线段外一动点,且,若,连接,当取得最大值时,的度数为_________

查看答案和解析>>

同步练习册答案