ͼ1ÊÇÓÉÈô¸É¸öСԲȦ¶Ñ³ÉµÄÒ»¸öÐÎÈçÕýÈý½ÇÐεÄͼ°¸£¬×îÉÏÃæÒ»²ãÓÐÒ»¸öԲȦ£¬ÒÔϸ÷²ã¾ù±ÈÉÏÒ»²ã¶àÒ»¸öԲȦ£¬Ò»¹²¶ÑÁËn²ã£®½«Í¼1µ¹ÖúóÓëԭͼ1Æ´³Éͼ2µÄÐÎ×´£¬ÕâÑùÎÒÃÇ¿ÉÒÔËã³öͼ1ÖÐËùÓÐԲȦµÄ¸öÊýΪ1+2+3+¡­+n=
n(n+1)2
£®¾«Ó¢¼Ò½ÌÍø
Èç¹ûͼ1ÖеÄԲȦ¹²ÓÐ12²ã£¬ÎÒÃÇ×ÔÉÏÍùÏ£¬ÔÚÿ¸öԲȦÖж¼°´Í¼3µÄ·½Ê½ÌîÉÏÒ»´®Á¬ÐøµÄÕýÕûÊý1£¬2£¬3£¬4£¬¡­£¬Ôò×îµ×²ã×î×ó±ßÕâ¸öԲȦÖеÄÊýÊÇ
 
£®
·ÖÎö£ºÒª¼ÆËãµÚ12²ã×î×ó±ßÕâ¸öԲȦÖеÄÊý£¬¼´Çó³öµÚ11²ã×îºóÒ»¸öÊý¼´¿É£®
½â´ð£º½â£ºÓɹ«Ê½1+2+3+¡­+n=
n(n+1)
2
£¬µ±n=11ʱ£¬
n(n+1)
2
=
11¡Á12
2
=66£¬
¹Ê×îµ×²ã×î×ó±ßÕâ¸öԲȦÖеÄÊýÊÇ67£®
¹Ê´ð°¸ÊÇ67£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËͼÐα仯µÄһЩ»ù±¾ÖªÊ¶£¬ÆäÖÐÉæ¼°µÈ²îÊýÁеļÆËãÎÊÌ⣬Äܹ»ÊýÁÐÕÆÎÕ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ͼ1ÊÇÓÉÈô¸É¸öСԲȦ¶Ñ³ÉµÄÒ»¸öÐÎÈçÕýÈý½ÇÐεÄͼ°¸£¬×îÉÏÃæ-²ãÓÐÒ»¸öԲȦ£¬ÒÔϸ÷²ã¾ù±ÈÉÏ-²ã¶àÒ»¸öԲȦ£¬Ò»¹²¶ÑÁËn²ã£®½«Í¼1µ¹ÖúóÓëԭͼ1Æ´³Éͼ2µÄÐÎ×´£¬ÕâÑùÎÒÃÇ¿ÉÒÔËã³öͼ1ÖÐËùÓÐԲȦµÄ¸öÊýΪ1+2+3+¡­+n=
n(n+1)2
£®
¾«Ó¢¼Ò½ÌÍø
Èç¹ûͼ1ÖеÄԲȦ¹²ÓÐ12²ã£¬
£¨1£©ÎÒÃÇ×ÔÉÏÍùÏ£¬ÔÚÿ¸öԲȦÖж¼°´Í¼3µÄ·½Ê½ÌîÉÏÒ»´®Á¬ÐøµÄÕýÕûÊý1£¬2£¬3£¬4£¬¡­£¬Ôò×îµ×²ã×î×ó±ßÕâ¸öԲȦÖеÄÊýÊÇ£»
£¨2£©ÎÒÃÇ×ÔÉÏÍùÏ£¬ÔÚÿ¸öԲȦÖж¼°´Í¼4µÄ·½Ê½ÌîÉÏÒ»´®Á¬ÐøµÄÕûÊý-23£¬-22£¬-21£¬¡­£¬Çóͼ4ÖÐËùÓÐԲȦÖи÷ÊýµÄ¾ø¶ÔÖµÖ®ºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©Í¼1ÊÇÓÉÈô¸É¸öСԲȦ¶Ñ³ÉµÄÒ»¸öÐÎÈçµÈ±ßÈý½ÇÐεÄͼ°¸£¬×îÉÏÃæÒ»²ãÓÐÒ»¸öԲȦ£¬ÒÔϸ÷²ã¾ù±ÈÉÏÒ»²ã¶àÒ»¸öԲȦ£¬Ò»¹²¶ÑÁËn²ã£®½«Í¼1µ¹ÖúóÓëԭͼ1Æ´³Éͼ2µÄÐÎ×´£¬ÕâÑùÎÒÃÇ¿ÉÒÔËã³öͼ1ÖÐËùÓÐԲȦµÄ¸öÊýΪ£º1+2+3+¡­+n=
 
£®
¾«Ó¢¼Ò½ÌÍø
£¨2£©Ð¡Ã÷ÔÚÒ»´ÎÊýѧ»î¶¯ÖУ¬ÎªÁËÇó
1
2
+
1
22
+
1
23
+
1
24
+¡­+
1
2n
µÄÖµ£¬Éè¼ÆÁËÈçͼ3ËùʾµÄͼÐΣ®ÇëÄãÀûÓÃÕâ¸ö¼¸ºÎͼÐÎÇó
1
2
+
1
22
+
1
23
+
1
24
+¡­+
1
2n
µÄֵΪ
 
£®
¾«Ó¢¼Ò½ÌÍø
£¨3£©ÇëÄãÀûÓÃͼ4£¬ÔÙÉè¼ÆÒ»¸öÄÜÇó
1
2
+
1
22
+
1
23
+
1
24
+¡­+
1
2n
µÄÖµµÄͼÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©Í¼1ÊÇÓÉÈô¸É¸öСԲȦ¶Ñ³ÉµÄÒ»¸öÐÎÈçµÈ±ßÈý½ÇÐεÄͼ°¸£¬×îÉÏÃæÒ»²ãÓÐÒ»¸öԲȦ£¬ÒÔϸ÷²ã¾ù±ÈÉÏÒ»²ã¶àÒ»¸öԲȦ£¬Ò»¹²¶ÑÁËn²ã£®½«Í¼1µ¹ÖúóÓëԭͼ1Æ´³Éͼ2µÄÐÎ×´£¬ÕâÑùÎÒÃÇ¿ÉÒÔËã³öͼ1ÖÐËùÓÐԲȦµÄ¸öÊýΪ£º1+2+3+¡­+n=
 
£»
¾«Ó¢¼Ò½ÌÍø
¾«Ó¢¼Ò½ÌÍø
£¨2£©ÔËÓõڣ¨1£©ÌâµÄ½áÂÛ£¬ÊÔÇó1+2+3+¡­+99µÄÖµ£»
£¨3£©ÔÚÒ»´ÎÊýѧ»î¶¯ÖУ¬ÎªÁËÇó
1
2
+
1
22
+
1
23
+
1
24
+
1
25
+¡­+
1
2n
µÄÖµ£¬Ð¡Ã÷Éè¼ÆÁËÈçͼ3ËùʾµÄ±ß³¤Îª1µÄÕý·½ÐÎͼÐΣ®ÇëÄãÀûÓÃÕâ¸ö¼¸ºÎͼÐÎÇó
1
2
+
1
22
+
1
23
+
1
24
+
1
25
+¡­+
1
2n
µÄֵΪ
 
£»
£¨4£©ÔËÓõڣ¨3£©ÌâµÄ½áÂÛ£¬ÊÔÇó
5
6
+
11
12
+
23
24
+
47
48
+
95
96
+
191
192
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ͼ1ÊÇÓÉÈô¸É¸öСԲȦ¶Ñ³ÉµÄÒ»¸öͼ°¸£¬×îÉÏÃæÒ»²ãÓÐ2¸öԲȦ£¬ÒÔϸ÷²ã¾ù±ÈÉÏÒ»²ã¶àÒ»¸öԲȦ£¬Ò»¹²¶ÑÁËn²ã£®Íê³ÉÏÂÁÐÎÊÌ⣺
£¨1£©Ã¿Ò»²ãµÄԲȦ¸öÊýÓë²ãÊýµÄ¹ØϵΪ£º
²ãÊý 1 2 3 ¡­ n
ÿ²ãԲȦ¸öÊý ¡­
£¨2£©ÎªÇóͼ1ÖÐԲȦµÄ×ÜÊý£¬¿ÉÓÃÈçÏ·½·¨£º
½«Í¼1µ¹ÖúóÓëԭͼ1Æ´³Éͼ2µÄÐÎ×´£¬Ôòͼ2ÖÐÿ²ãԲȦ¸öÊýΪ
n+3
n+3
£»n²ãԲȦ×ÜÊýΪ
n
n
£»ÓÉÓÚͼ2ÖÐԲȦ¸öÊýÊÇͼ1ÖеÄ
2
2
±¶£¬¿ÉÒԵóöͼ1ÖÐËùÓÐԲȦµÄ¸öÊýΪ
n(n+3)
2
n(n+3)
2
£®

£¨3£©¼ÙÉèͼ1ÖеÄԲȦ¹²ÓÐ10²ã£¬ÎÒÃÇ×ÔÉÏÍùÏ£¬ÔÚÿ¸öԲȦÖж¼°´Í¼3µÄ·½Ê½ÌîÉÏÒ»´®Á¬ÐøµÄÕýÕûÊý1£¬2£¬3£¬4£¬¡­£¬Ôò×îµ×²ã´Ó×ó±ßÊýµÚÈý¸öԲȦÖеÄÊýÊÇ
57
57
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸