精英家教网 > 初中数学 > 题目详情
在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.
(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2
(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;
(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?
答:______(填“成立”或“不成立”)

【答案】分析:(1)过A作AF⊥AC交CO延长线于F,连接MF,根据相似求出AF=BC,CO=OF,求出FM=CM,根据勾股定理求出即可;
(2)过A作AF⊥AC交CO延长线于F,连接MF,根据相似求出AF=BC,CO=OF,求出FM=CM,根据勾股定理求出即可;
(3)结论依然成立.
解答:(1)证明:如图1,过A作AF⊥AC交CO延长线于F,连接MF,
∵∠ACB=90°,
∴BC∥AF,
∴△BOC∽△AOF,
==
∵O为AB中点,
∴OA=OB,
∴AF=BC,CO=OF,
∵∠MOC=90°,
∴OM是CF的垂直平分线,
∴CM=MF,
在Rt△AMF中,由勾股定理得:MF2=AM2+AF2=AM2+BC2
即MC2=AM2+BC2

(2)解:还成立,
理由是:如图2,
过A作AF⊥AC交CO延长线于F,连接MF,
∵∠ACB=90°,
∴BC∥AF,
∴△BOC∽△AOF,
==
∵OA=OB,
∴AF=BC,CO=OF,
∵∠MOC=90°,
∴OM是CF的垂直平分线,
∴CM=MF,
在Rt△AMF中,由勾股定理得:MF2=AM2+AF2=AM2+BC2
即MC2=AM2+BC2

(3)成立.
点评:本题考查了直角三角形,相似三角形的性质和判定,勾股定理的应用,主要考查学生综合运用性质和定理进行推理的能力,题目比较好,证明过程类似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,AC=8,BC=6,AB=10,则△ABC的外接圆半径长为(  )
A、10B、5C、6D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

17、在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,AC与⊙O相切于点A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2

(3)求图中阴影部分的面积(结果用π表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)如图,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA为半径的⊙C与AB、BC分别交于点D、E,联结AE,DE.
(1)求BC的长;
(2)求△AED的面积.

查看答案和解析>>

同步练习册答案