精英家教网 > 初中数学 > 题目详情
(2012•大兴区一模)如图,圆柱底面直径AB、母线BC均为4cm,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短距离(  )
分析:由于圆柱底面直径AB、母线BC均为4cm,S为BC的中点,故BS=2cm,先把圆柱的侧面展开,连接AS,利用勾股定理即可得出AS的长.
解答:解:∵圆柱底面直径AB、母线BC均为4cm,S为BC的中点,
∴圆柱底面圆的半径是2cm,BS=2cm,
AB
=
1
2
×2π×2=2π,
如图所示:
连接AS,在Rt△ABS中,
AS=
AB2+BS2
=
(2π)2+22
=(2
π2+1
)cm.
故选A.
点评:本题考查的是平面展开-最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•大兴区一模)已知:如图,在平行四边形ABCD中,AB=4,AD=7,∠ABC的平分线交AD于点E,则ED的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大兴区一模)若
x+y-3
+(y+2)2=0
,则x-y的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大兴区一模)分解因式:x4-x2y2=
x2(x+y)(x-y)
x2(x+y)(x-y)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大兴区一模)
9
+2cos60°+(
1
2
)-1-20120

查看答案和解析>>

同步练习册答案