【题目】已知a2+10b2+c2﹣4ab=a﹣2bc﹣,则a﹣2b+c=_____.
【答案】-14.
【解析】
首先把已知等式进行变形,再配方得出(3a-2)2+(18b+2c)2+(12a-6b)2=0,得出3a-2=0,18b+2c=0,12a-6b=0,求出a=,b=,c=-12,即可得出结果.
a2+10b2+c2﹣4ab=a﹣2bc﹣,
整理得:153a2+360b2+4c2﹣144ab=12a﹣72bc﹣4,
即(9a2﹣12a+4)+(324b2+72b+4c2)+(144a2﹣144ab+36b2)=0,
∴(3a﹣2)2+(18b+2c)2+(12a﹣6b)2=0,
∴3a﹣2=0,18b+2c=0,12a﹣6b=0,
∴a=,b=,c=﹣12,
∴a﹣2b+c=﹣2×﹣12=﹣14,
故答案为:﹣14.
科目:初中数学 来源: 题型:
【题目】如图,已知A、B两点的坐标分别为A(0,2),B(2,0),直线AB与反比例函数y=的图象交于点C和点D(﹣1,a).
(1)求直线AB和反比例函数的解析式;
(2)求∠ACO的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x1、x2是关于x的一元二次方程x2+(3a-1)x+2a2-1=0的两个实数根,使得(3x1-x2)(x1-3x2)=-80成立,求其实数a的可能值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校李老师布置了两道解方程的作业题:
选用合适的方法解方程:
(1)x(x+1)=2x;(2)(x+1)(x﹣3)=7
以下是王萌同学的作业:
解:(1)移项,得x(x+1)﹣2x=0 分解因式得,x(x+1﹣2)=0 所以,x=0,或x﹣1=0 所以,x1=0,x2=1 | (2)变形得,(x+1)(x﹣3)=1×7 所以,x+1=7,x﹣3=1 解得,x1=6,x2=4 |
请你帮王萌检查他的作业是否正确,把不正确的改正过来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.
甲 | 乙 | 丙 | |
单价(元/米2) |
(1)当时,求区域Ⅱ的面积.
(2)计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2-(m+2)x+(2m-1)=0。
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.
(1)学生小红计划选修两门课程,请写出所有可能的选法;
(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处, 折痕为AF,若CD=6,则AF等于__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,点O在对角线BD上,以OD为半径的⊙O与AD、BD分别交于点E、F,且∠ABE=∠DBC.
(1)求证:BE与⊙O相切;
(2)若,CD=2,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com