精英家教网 > 初中数学 > 题目详情
如图,菱形ABCD中,∠BAD=60°,E是BD上一点,∠AEF=60°.DE=1,BF=
23
,则菱形的边长为
3
3
分析:根据菱形性质得出AD=AB,推出△ADB是等边三角形,推出AD=AB=BD,∠ADE=∠ABE=60°,设AD=BD=x,求出∠DAE=∠FEB,证△ADE∽△EBF,推出
DE
BF
=
AD
BE
,代入取出即可.
解答:解:∵四边形ABCD是菱形,
∴AD=AB,
∵∠DAB=60°,
∴△ADB是等边三角形,
∴AD=AB=BD,∠ADE=∠ABE=60°,
设AD=BD=x,
∵∠AEF=60°,
∴∠DAE+∠DEA=180°-60°=120°,∠DEA+∠FEB=180°-60°=120°,
∴∠DAE=∠FEB,
∵∠ADE=∠EBF,
∴△ADE∽△EBF,
DE
BF
=
AD
BE

1
2
3
=
x
x-1

x=3,
故答案为3.
点评:本题考查了等边三角形的性质和判定,三角形的内角和定理,相似三角形的性质和判定,菱形的性质等知识点的综合运用,关键是推出△ADE∽△EBF.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.
(1)求证:AE=AF;
(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD中,∠A=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿B→C→D向终点D运动.同时动点Q从点A出发,以相同的速度沿A→D→B向终点B运动,运动的时间为x秒,当点P到达点D时,点P、Q同时停止运动,设△APQ的面积为y,则反映y与x的函数关系的图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若AB长为2
3
,则PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:菱形ABCD中,E是AB的中点,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度数;
(2)对角线BD的长;
(3)菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的长.
(2)求菱形的面积.

查看答案和解析>>

同步练习册答案