精英家教网 > 初中数学 > 题目详情
如图所示,AB∥CD,则∠A+∠AEF+∠EFC+∠C等于(  )
分析:首先过点E作EM∥AB,过点F作FN∥AB,易得AB∥EM∥FN∥CD,然后由两直线平行,同旁内角互补,即可求得∠A+∠AEF+∠EFC+∠C的值.
解答:解:过点E作EM∥AB,过点F作FN∥AB,
∵AB∥CD,
∴AB∥EM∥FN∥CD,
∴∠A+∠AEM=180°,∠MEF+∠EFN=180°,∠NFC+∠C=180°,
∴∠A+∠AEF+∠EFC+∠C=∠A+∠AEM+∠MEF+∠EFN+∠NFC+∠C=180°+180°+180°=540°.
故选B.
点评:此题考查了平行线的性质.此题比较简单,解题的关键是掌握两直线平行,同旁内角互补定理的应用与辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图所示,AB∥CD,则∠1+∠2+∠3=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图所示,AB∥CD,若∠ABE=130°,∠CDE=152°,则∠BED=
78
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB∥CD,需增加什么条件才能使∠1=∠2成立?
 
(至少举出两种).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,AB∥CD,BC∥DE,则∠B+∠D=
180
180
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB∥CD,EG⊥AB,垂足为G,若∠1=42°,则∠E=
 

查看答案和解析>>

同步练习册答案