【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点P,根据下列条件,求∠BPC的度数.
(1)若∠ABC=50°,∠ACB=60°,则∠BPC= ;
(2)若∠ABC+∠ACB=120°,则∠BPC= ;
(3)若∠A=80°,则∠BPC= ;
(4)从以上的计算中,你能发现已知∠A,求∠BPC的公式是:∠BPC= (提示:用∠A表示).
【答案】(1)125°;(2)120°;(3)130°;(4)90°+∠A.
【解析】
(1)由∠ABC=50°,∠ACB=60°,∠2+∠4=25°+30°=55°,在△BCP中,由三角形内角和为180°可得答案;
(2)同理,由ABC+∠ACB=120°,∠ABC和∠ACB的平分线相交于点P,可得∠2+∠4=×120°=60°,在△BCP中,由三角形内角和为180°可得答案;
(3) A=80°,可得ABC+∠ACB=100°,∠2+∠4=×100°=50°,可得∠BPC的度数;
(4)ABC+∠ACB=180°﹣∠A,∠ABC和∠ACB的平分线相交于点P,可得∠2+∠4=×(180°﹣∠A),在△BCP中,∠P=180°﹣×(180°﹣∠A)=90°+∠A
解:(1)∵∠ABC=50°,∠ACB=60°,∠ABC和∠ACB的平分线相交于点P,
∴∠2+∠4=25°+30°=55°,
∴△BCP中,∠P=180°﹣55°=125°,
故答案为:125°;
(2)∵∠ABC+∠ACB=120°,∠ABC和∠ACB的平分线相交于点P,
∴∠2+∠4=×120°=60°,
∴△BCP中,∠P=180°﹣60°=120°,
故答案为:120°;
(3)∵∠A=80°,
∴∠ABC+∠ACB=100°,
∠ABC和∠ACB的平分线相交于点P,
∴∠2+∠4=×100°=50°,
∴△BCP中,∠P=180°﹣50°=130°,
故答案为:130°;
(4))∵∠ABC+∠ACB=180°﹣∠A,∠ABC和∠ACB的平分线相交于点P,
∴∠2+∠4=×(180°﹣∠A),
∴△BCP中,∠P=180°﹣×(180°﹣∠A)=90°+∠A.
故答案为:90°+∠A.
科目:初中数学 来源: 题型:
【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(—3,—3),B(—2,—1),C(—1,—2)是直角坐标平面上三点。
(1)请画出ΔABC关于原点O对称的ΔA1B1C1,
(2)请写出点B关天y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在ΔA1B1C1内部,指出h的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;
(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.
①用含x的代数式表示∠EOF;
②求∠AOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y,图中的折线表示y与x之间的函数关系.
(1)甲、乙两地之间的距离为 千米;图中点B的实际意义是 ;
(2)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;
(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1+∠2=180°,∠DAE=∠BCF.
(1)试判断直线AE与CF有怎样的位置关系?并说明理由;
(2)若∠BCF=70°,求∠ADF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平行四边形ABCD中,连接对角线BD,作AE⊥BD于E,CF⊥BD于F,
(1)求证:△AED≌△CFB;
(2)若∠ABC=75°,∠ADB=30°,AE=3,求平行四边形ABCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上.
(1)求证:AE2+AD2=2AC2;
(2)如图2,若AE=3,AC=,点F是AD的中点,求出CF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com