精英家教网 > 初中数学 > 题目详情

如图,在等腰直角ABC中,ABC=90°AB=BC=4PAC中点,EAB边上一动点,FBC边上一动点,且满足条件EPF=45°,记四边形PEBF的面积为S1

1)求证:APE=CFP

2)记CPF的面积为S2CF=xy=

y关于x的函数解析式和自变量的取值范围,并求y的最大值.

在图中作四边形PEBF关于AC的对称图形,若它们关于点P中心对称,求y的值.

 

 

(1)见解析

(2)y关于x的函数解析式为:y=﹣+﹣1,(2≤x≤4),y的最大值为1;

见解析 y=2﹣2

【解析】

试题分析:1)分别证出APE+FPC=CFP+FPC=135°,即可得出APE=CFP

2先证出=,再根据AP=CP=2,得出AE==,过点PPHAB于点HPGBC于点G,求出SAPE=PH•AE=S2=SPCF=CF×PG=x,再根据S1=SABC﹣SAPE﹣SPCF求出S1=8﹣﹣x,再代入y=得出y=﹣82+1,最后根据2≤x≤4,得出时,y取得最大值,最后将x=2代入y=即可求出y最大=1

根据图中两块阴影部分图形关于点P成中心对称,得出阴影部分图形自身关于直线BD对称,AE=FC,从而得出=x,求出x=2,最后把代入y=﹣+﹣1即可.

试题解析:1∵∠EPF=45°

∴∠APE+FPC=180°﹣45°=135°

在等腰直角ABC中,PCF=45°

CFP+FPC=180°﹣45°=135°

∴∠APE=CFP

2①∵∠APE=CFP,且FCP=PAE=45°

∴△APE∽△CFP

=

在等腰直角ABC中,AC=AB=4

PAC的中点,则AP=CP=2

AE===

如图1,过点PPHAB于点HPGBC于点G

PAC中点,则PHBC,且PH=BC=2,同理PG=2

SAPE=PH•AE=×2×=

S2=SPCF=CF×PG=×x×2=x

S1=SABC﹣SAPE﹣SPCF=×4×4﹣﹣x=8﹣﹣x

y===﹣+﹣1=﹣82+1

EAB上运动,FBC上运动,且EPF=45°

2≤x≤4

时,y取得最大值.

x=2x的取值范围内,将x=2代入y==﹣82+1,得y最大=1

y关于x的函数解析式为:y=﹣+﹣1,(2≤x≤4),y的最大值为1

如图2所示:

图中两块阴影部分图形关于点P成中心对称,则阴影部分图形自身关于直线BD对称,

此时EB=BF,即AE=FC

=x

解得x1=2x2=﹣2(舍去),

代入y=﹣+﹣1,得y=2﹣2

考点:几何变换综合题.

 

练习册系列答案
相关习题

科目:初中数学 来源:2013-2014学年上海市杨浦区5月中考二模数学试卷(解析版) 题型:解答题

解不等式组:,且写出使不等式组成立的所有整数.

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年上海市普陀区中考二模数学试卷(解析版) 题型:选择题

一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为(  )

A. B C. D

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年上海市徐汇区中考二模数学试卷(解析版) 题型:填空题

关于x的方程ax2-4x+3=0有两个相等的实数根,则常数a的值是 

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年上海市徐汇区中考二模数学试卷(解析版) 题型:选择题

“大衣哥”朱之文是从“我是大明星”这个舞台走出来的民间艺人.受此影响,卖豆腐的老张也来参加节目的海选,当天共有15位选手参加决逐争取8个晋级名额.已知他们的分数互不相同,老张要判断自己是否能够晋级,只要知道下列15名选手成绩统计量中的(  )

A.众数 B方差 C中位数 D平均数

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年安徽省安庆市中考二模数学试卷(解析版) 题型:解答题

如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,ABC的顶点均在格点上,请按要求完成下列步骤:

1)先将ABC向右平移3个单位后得到A1B1C1,再将A1B1C1绕点B1按逆时针方向旋转90°后得到A2B1C2;试在正方形网格中画出上述二次变换所得到的图形;

2)求线段A1C1旋转得到A2C2的过程中,线段A1C1所扫过的面积.

 

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年安徽省安庆市中考二模数学试卷(解析版) 题型:填空题

解因式:a3﹣10a2+25a= 

 

查看答案和解析>>

科目:初中数学 来源:2016届安徽省无为县七年级第一学期期末考试数学试卷(解析版) 题型:解答题

解方程:

 

查看答案和解析>>

科目:初中数学 来源:2016届初中数学湘教版七年级上第4章练习卷(解析版) 题型:解答题

有一火车要以每分钟600的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50,试求两座铁桥的长分别为多少.

 

查看答案和解析>>

同步练习册答案