精英家教网 > 初中数学 > 题目详情

如图,已知BE⊥AD,CF⊥AD,且BE=CF.请你判断AD是△ABC的中线还是角平分线?请说明你判断的理由.

解:AD是△ABC的中线.
理由如下:
∵BE⊥AD,CF⊥AD,
∴∠BED=∠CFD=90°,
在△BDE和△CDF中,

∴△BDE≌△CDF(AAS),
∴BD=CD.
∴AD是△ABC的中线.
分析:我们可以通过证明△BDE和△CDF全等来确定其为中线.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要根据实际情况灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,已知BE⊥AD,CF⊥AD,且BE=CF,那么AD是△ABC的中线还是角平分线?
中线

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知BE⊥AD,CF⊥AD,且BE=CF.
求证:△BDE≌△CDF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知BE⊥AD,CF⊥AD,垂足分别是E,F,且BE=CF,请判断AD是△ABC的中线吗?说明你判断的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

判断下列命题的真假,并给出证明(若是真命题给出证明,若是假命题举出反例):
(1)若
a2
=3
,则a=3;
(2)如图,已知BE⊥AD,CF⊥AD,垂足分别为点E,F,且BE=CF.则AD是△ABC的中线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知BE⊥AD,CF⊥AD,且BE=CF.
(1)请你判断AD是否为△ABC的中线;
(2)当AB与AC满足什么条件时,AD是△ABC的角平分线?请分析说明理由.

查看答案和解析>>

同步练习册答案