精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,过点C作CE⊥BC交对角线BD于点E,且DE=CE,若,则DE=_____.

【答案】1

【解析】

根据菱形的性质得出BC=CD=AB=,从而得出∠DBC=CDB,根据DE=CE得出∠CDB=ECD,得出∠DBC=CDB=ECD,根据三角形的内角和定理,求出∠DBC=30°,再根据锐角三角函数求出CE的长即可。

解:在菱形ABCD,BC=CD=AB=
∴∠DBC=CDB,

DE=CE,∴∠CDB=ECD,

∴∠DBC=CDB=ECD,

CEBC,∴∠BCE=90°,
BCD中,

DBC+CDB+BCE+ECD=180°

∴∠DBC=30°,
RtBCE中,BC=

tanDBC= tan30°==
CE=1,DE=1

故答案为:1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下列一段文字,然后回答下列问题.

已知在平面内有两点P1x1y1)、P2x2y2),其两点间的距离P1P2,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为|x2x1||y2y1|.已知一个三角形各顶点坐标为D16)、E42),平面直角坐标系中,在x轴上找一点P,使PD+PE的长度最短,则PD+PE的最短长度为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直角坐标系中直线 AB x 轴正半轴、y 轴正半轴交于 AB 两点,已知 B(04),∠BAO=30°,PQ 分别是线段 OBAB 上的两个动点,P O 出发以每秒 3 个单位长度的速度向终点 B 运动,Q B 出发以每秒 8 个单位长度的速度向终点 A 运动,两点同时出发,当其中一点到达终点时整个运动结束,设运动时间为 t(秒).

(1)求线段 AB 的长,及点 A 的坐标;

(2)t 为何值时,△BPQ 的面积为

(3) C OA 的中点,连接 QCQP,以 QCQP 为邻边作平行四边形 PQCD

t 为何值时,点 D 恰好落在坐标轴上;

②是否存在时间 t 使 x 轴恰好将平行四边形 PQCD 的面积分成 13 的两部分,若存在,直接写出 t 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠FAE=∠FAD,FE=FD.

(1)如图1,若∠AEF=∠ADF,求证:AE=AD;

(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;

(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了倡导“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况做一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨)并将调查结果制成了如图所示的条形统计图。

(1)请将条形统计图补充完整;

(2)求这100个样本数据的平均数,众数和中位数;

(3)根据样本数据,估计市直机关500户家庭中平均用水量不超过12吨的约有多少户?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,已知∠BAC=450ADBC于点DBD=2DC=3,求AD的长。某同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题。请按照这位同学的思路,探究并解答下列问题:

1)分别以ABAC为对称轴,作出ABDACD的轴对称图形,点D的对称点分别为EF,延长EBFC交于点G,证明四边形AEGF是正方形;

2)设AD=x,建立关于x的方程模型,求出AD的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示ABO的直径ADO相切于点ADEO相切于点ECDE延长线上一点CE=CB

(1)求证BCO的切线

(2)AB=4,AD=1,求线段CE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:

如图1,点是直线上一点,上方的四边形中,,延长,探究的数量关系,并证明.

小白的想法是:“作(如图2),通过推理可以得到,从而得出结论”.

请按照小白的想法完成解答:

拓展延伸:

保留原题条件不变,平分,反向延长,交的平分线于点(如图3),设,请直接写出的度数(用含的式子表示).

查看答案和解析>>

同步练习册答案