精英家教网 > 初中数学 > 题目详情

【题目】如图 平分 于点.

1的度数.

2求证 .

【答案】122.5;(2)证明见解析.

【解析】试题分析:(1)因为∠E=A,CDE=BDA,可得∠ECD=ABD,由条件知∠ABC=45°且BD平分∠ABC,从而得解.

(2)延长BA,CE交于点F,证△ABD≌△ACF,通过角之间的关系,得到BF=BC,又由CE⊥BD,进而可求解.

试题解析:(1

∴∠ABC=45°

BD平分∠ABC

∴∠ABD=ABC=22.5°

在△ABD和△ECD中,∠E=A,CDE=BDA

∴∠ECD=ABD=22.5°

(2)证明:如图所示,延长BA,CE交于点F,


∵∠ABD+ADB=90°CDE+ACF=90°
∴∠ABD=ACF
又∵AB=AC
RtABDRtACF

∴Rt△ABD≌Rt△ACF,
∴BD=CF,
Rt△FBERt△CBE
∵BD平分∠ABC,
∴∠BCF=∠F,
∵∠BEC=90°
∴∠BEF=∠BEC=90°
∵BE=BE
∴Rt△FBE≌Rt△CBE
∴EF=EC,
∴CF=2CE,
BD=2CE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,∠BOM=90°,∠DON=90°.

(1)若∠COM=∠AOC,求∠AOD的度数;

2)若COM=BOC,求AOCMOD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD的外侧,作等边ADE,则BED的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线OMON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.

(1)填空:∠OBC+ODC=   

(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DEBF:

(3)如图2:若BF、DG分别平分∠OBC、ODC的外角,判断BFDG的位置关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】向阳中学数学兴趣小组对关于x的方程(m+1+m2x1=0提出了下列问题:

1)是否存在m的值,使方程为一元二次方程?若存在,求出m的值,并解此方程;

2)是否存在m的值,使方程为一元一次方程?若存在,求出m的值,并解此方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△ACD,连接AD,BC.若∠ACB=30°AB=1CC=x,则下列结论:①△AAD≌△CCB②当x=1时,四边形ABCD是菱形;③当x=2时,△BDD为等边三角形.其中正确的是_______(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影.已知桌面的直径为12 m,桌面距离地面1 m.若灯泡距离地面3 m,则地面上阴影部分的面积为 ( )

A. 036πm2 B. 081πm2 C. 2πm2 D. 3.24πm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定日期多用6天;③若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:

1两队单独做各要几天完成?

2在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理.

查看答案和解析>>

同步练习册答案