精英家教网 > 初中数学 > 题目详情
(2008•泰州)已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-).
(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象;
(2)若反比例函数y2=(x>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内交于点A(x,y),x落在两个相邻的正整数之间,请你观察图象,写出这两个相邻的正整数;
(3)若反比例函数y2=(x>0,k>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内的交点A,点A的横坐标x满足2<x<3,试求实数k的取值范围.

【答案】分析:(1)已知了抛物线与x轴的交点,可用交点式来设二次函数的解析式.然后将另一点的坐标代入即可求出函数的解析式.
(2)可根据(1)的抛物线的解析式和反比例函数的解析式来联立方程组,求出的方程组的解就是两函数的交点坐标,然后找出第一象限内交点的坐标,即可得出符合条件的x的值,进而可写出所求的两个正整数.
(3)点A的横坐标x满足2<x<3,可通过x=2,x=3两个点上抛物线与反比例函数的大小关系即可求出k的取值范围.
解答:解:(1)设抛物线解析式为y=a(x-1)(x+3),
将(0,-)代入,解得a=
∴抛物线解析式为y=x2+x-


(2)正确的画出反比例函数在第一象限内的图象,
由图象可知,交点的横坐标x落在1和2之间,从而得出这两个相邻的正整数为1与2.

(3)由函数图象或函数性质可知:当2<x<3时,
对y1=x2+x-,y1随着x增大而增大,
对y2=(k>0),y2随着x的增大而减小.
因为A(x,y)为二次函数图象与反比例函数图象的交点,
所以当x=2时,由反比例函数图象在二次函数上方得y2>y1
×22+2-
解得k>5.
同理,当x=3时,由二次函数图象在反比例上方得y1>y2
×32+3-
解k<18,
所以K的取值范围为5<k<18.
点评:本题主要考查了二次函数和反比例函数的相关知识以及在直角坐标系中作图、读图的能力.
练习册系列答案
相关习题

科目:初中数学 来源:2008年江苏省泰州市中考数学试卷(解析版) 题型:解答题

(2008•泰州)已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-).
(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象;
(2)若反比例函数y2=(x>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内交于点A(x,y),x落在两个相邻的正整数之间,请你观察图象,写出这两个相邻的正整数;
(3)若反比例函数y2=(x>0,k>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内的交点A,点A的横坐标x满足2<x<3,试求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省温州市外国语学校一模试卷(解析版) 题型:解答题

(2008•泰州)已知关于x的不等式ax+3>0(其中a≠0).
(1)当a=-2时,求此不等式的解,并在数轴上表示此不等式的解集;
(2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数:-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,将这10张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为不等式中的系数a,求使该不等式没有正整数解的概率.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(义蓬二中 余笑蓉)(解析版) 题型:解答题

(2008•泰州)已知关于x的不等式ax+3>0(其中a≠0).
(1)当a=-2时,求此不等式的解,并在数轴上表示此不等式的解集;
(2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数:-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,将这10张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为不等式中的系数a,求使该不等式没有正整数解的概率.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省泰州市中考数学试卷(解析版) 题型:解答题

(2008•泰州)已知关于x的不等式ax+3>0(其中a≠0).
(1)当a=-2时,求此不等式的解,并在数轴上表示此不等式的解集;
(2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数:-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,将这10张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为不等式中的系数a,求使该不等式没有正整数解的概率.

查看答案和解析>>

同步练习册答案