精英家教网 > 初中数学 > 题目详情

【题目】定义:对于一个数x,我们把[x]称作x的相伴数;若x0,则[x]x1;若x0,则[x]x+1.例:[0.5]=﹣0.5

1)求[][1]的值;

2)当a0b0时,有[a][b],试求代数式(ba33a+3b的值;

3)解方程:[x]+[x+2]1

【答案】1 0;(2-14;(3.

【解析】

1)根据相伴数的定义即可求解;

2)由相伴数的定义化简原式,可得ba=﹣2,然后代入代数式运算即可;

3)分三种情况列出方程、化简方程并解方程即可.

解:(1[]1[1]=﹣1+10

2)根据题意得,a1b+1,则ba=﹣2

代数式(ba33a+3b=(ba3+3ba)=﹣86=﹣14

3)当x0x+2<0时,即时,方程为,解得(不符合题意,舍去);

时,即时,则方程为,解得

时,无解,舍去;

时,即时,则方程为,解得

综上所述,.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在数学问题中,我们常用几何方法解决代数问题,借助数形结合的方法使复杂问题简单化.

材料一:我们知道|a|的几何意义是:数轴上表示数a的点到原点的距离;|ab|的几何意义是:数轴上表示数ab的两点之间的距离;|a+b|的几何意义是:数轴上表示数a,﹣b的两点之间的距离;根据绝对值的几何意义,我们可以求出以下方程的解.

1|x3|4

解:由绝对值的几何意义知:

在数轴上x表示的点到3的距离等于4

x13+47x234=﹣1

2|x+2|5

解:∵|x+2||x﹣(﹣2|,∴其绝对值的几何意义为:在数轴上x表示的点到﹣2的距离等于5.∴x1=﹣2+53x2=﹣25=﹣7

材料二:如何求|x1|+|x+2|的最小值.

|x1|+|x+2|的几何意义是数轴上表示数x的点到表示数1和﹣2两点的距离的和,要使和最小,则表示数x的这点必在﹣21之间(包括这两个端点)取值.

|x1|+|x+2|的最小值是3;由此可求解方程|x1|+|x+2|4,把数轴上表示x的点记为点P,由绝对值的几何意义知:当﹣2≤x≤1时,|x1|+|x+2|恒有最小值3,所以要使|x1|+|x+2|4成立,则点P必在﹣2的左边或1的右边,且到表示数﹣21的点的距离均为0.5个单位.

故方程|x1|+|x+2|4的解为:x1=﹣20.5=﹣2.5x21+0.51.5

阅读以上材料,解决以下问题:

1)填空:|x3|+|x+2|的最小值为   

2)已知有理数x满足:|x+3|+|x10|15,有理数y使得|y3|+|y+2|+|y5|的值最小,求xy的值.

3)试找到符合条件的x,使|x1|+|x2|+…+|xn|的值最小,并求出此时的最小值及x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点EF分别在ABCD上,AFCE,垂足为点O,∠1=∠B

A+290°.求证:ABCD

证明:如图,

∵∠1=∠B(已知)

CEBF(同位角相等,两直线平行)

______________

∴∠AFC+290°(等式性质)

∵∠A+290°(已知)

∴∠AFC=∠A(同角或等角的余角相等)

ABCD(内错角相等,两直线平行)

请你仔细观察下列序号所代表的内容:

①∴∠AOE90°(垂直的定义)

②∴∠AFB90°(等量代换)

③∵AFCE(已知)

④∵∠AFC+AFB+2180°(平角的定义)

⑤∴∠AOE=∠AFB(两直线平行,同位角相等)

横线处应填写的过程,顺序正确的是(  )

A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:

(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?

(2)请把条形统计图补充完整;

(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上的AB两点所对应的数分别为abP为数轴上的一个动点.其中ab满足(a12+|b+5|0

1)若点PAB的中点,求P点对应的数.

2)若点PA点出发,以每秒2个单位的速度向左运动,t秒后,求P点所对应的数以及PB的距离.

3)若数轴上点MN所对应的数为mn,其中APM的中点,BPN的中点,无论点P在何处,是否为一个定值?若是,求出定值:若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB= 90°,AC= 6cm, AB= 12cm,点P 从A出发沿AC向C点以1cm/s的速度匀速移动;点Q从C出发沿CB向B点以cm/s的速度匀速移动,点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒;点0为AB的中点。

(1)当t=2时,求线段PQ的长度;

(2) 连接OC,当PQ⊥0C时,求出t的值;

(3)连结PO,PQ,是否存在t的值,使△OPQ成为以PQ为斜边的直角三角形?若存在,求出t的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2(2m1)xm240.

(1)m为何值时,方程有两个不相等的实数根?

(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形中,上的一个动点,由运动(与不重合),速度为每秒延长线上一点,与点以相同的速度由延长线方向运动(不与重合),连结AB

1)如图1,若,求点P运动几秒后,.

2)在(1)的条件下,作F,在运动过程中,线段长度是否发生变化,如果不变,求出的长;如果变化,请说明理由.

3)如图3,当时,平行四边形的面积是,那么在运动中是否存在某一时刻,点PQ关于点E成中心对称,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:公路旁有两个高度相等的路灯ABCD.数学老师杨柳上午上学时发现路灯B在太阳光下的影子恰好落到里程碑E处,他自己的影子恰好落在路灯CD的底部C处.晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在里程碑E处.

(1)在图中画出杨老师的位置(用线段FG表示),并画出光线,标明(太阳光、灯光);

(2)若上午上学时候高1米的木棒的影子为2米,杨老师身高为1.5米,他离里程碑E恰5米,求路灯高.

查看答案和解析>>

同步练习册答案