精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数ykx+3的图象分别交x轴、y轴于点B、点C,与反比例函数的图象在第四象限的相交于点P,并且PAy轴于点A,已知A 0,﹣6),且SCAP18

1)求上述一次函数与反比例函数的表达式;

2)设Q是一次函数ykx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.

【答案】1y= y=;(2Q1() Q2()

【解析】

1)根据一次函数解析式可得到点C的坐标为(03),已知SCAP18,可求得点A、点P的坐标,点P在一次函数和反比例函数上,利用待定系数法即可求得函数解析式.

2)设点Q的坐标(mm+3),根据一次函数解析式可知点B坐标,结合等底三角形面积性质可得到关于m的一元一次方程,解方程即可求得m值,进而求得Q点坐标.

1)令一次函数y=kx+3中的x=0,则y=3

即点C的坐标为(03),

AC=3--6=9

SCAP=AC·AP=18

AP=4

∵点A的坐标为(0-6),

∴点P的坐标为(4-6).

∵点P在一次函数y=kx+3的图象上,

-6=4k+3,解得:k=

∵点P在反比例函数的图象上,

-6=,解得:n=-24

∴一次函数的表达式为y=x+3,反比例函数的表达式为

2)令一次函数=y=x+3中的y=0

解得x=

即点B的坐标为(0).

设点Q的坐标为(mm+3

∵△OCQ的面积是△BCO面积的2倍,

|m|=2×,解得:m=±

∴点Q的坐标为Q1() Q2()

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知某种水果的批发单价与批发量的函数关系如图1所示.

1)请说明图中两段函数图象的实际意义;

2)写出批发该种水果的资金金额w(元)与批发量mkg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;

3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图3所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如何求tan75°的值?按下列方法作图可解决问题,如图,在RtABC中,ACk,∠ACB90°,∠ABC30°,延长CB至点M,在射线BM上截取线段BD,使BDAB,连接AD,依据此图可求得tan75°的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在钝角三角形中,分别以为斜边向的外侧作等腰直角三角形和等腰直角三角形平分于点,取的中点的中点,连接,下列结论:①;②;③;④.其中正确结论有( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC的平行线交AB的延长线于点D.

(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;

(2)当DP为⊙O的切线时,求线段DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了   人;在扇形统计图中,表示支付宝支付的扇形圆心角的度数为   

(2)将条形统计图补充完整.观察此图,支付方式的众数   ”;

(3)在一次购物中,小明和小亮都想从微信”、“支付宝”、“银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABAC10,以AB为直径的OOBC相交于点D,与AC相交于点EDFAC,垂足为F,连接DE,过点AAGDE,垂足为GAG与⊙O交于点H

1)求证:DF是⊙O的切线;

2)若∠CAG25°,求弧AH的长;

3)若tanCDF,求AE的长;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校1200名学生发起向贫困山区学生捐款活动,为了解捐款情况,学生会随机抽取了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②.

请根据以上信息,解答下列问题:

1)本次抽样调查的样本容量为____

2)图①中“20对应扇形的圆心角的度数为_____°

3)估计该校本次活动捐款金额为15元以上(含15元)的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将抛物线M1yax2+4x向右平移3个单位,再向上平移3个单位,得到抛物线M2,直线yxM1的一个交点记为A,与M2的一个交点记为B,点A的横坐标是﹣3

1)求a的值及M2的表达式;

2)点C是线段AB上的一个动点,过点Cx轴的垂线,垂足为D,在CD的右侧作正方形CDEF

当点C的横坐标为2时,直线yx+n恰好经过正方形CDEF的顶点F,求此时n的值;

在点C的运动过程中,若直线yx+n与正方形CDEF始终没有公共点,求n的取值范围(直接写出结果).

查看答案和解析>>

同步练习册答案