分析 (1)由平行四边形的性质得出AB=CD,BD=2OD,再证明OD=AD,由E为AD的中点,根据三线合一性质即可证出DE⊥AC;
(2)先证明EF是△OAB的中位线,得出EF=$\frac{1}{2}$AB,再由直角三角形斜边上的中线性质得出EG=$\frac{1}{2}$CD,即可得出EF=EG.
解答 证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,BD=2OD,
∵BD=2AD,
∴OD=AD,
又∵E为AD的中点,
∴DE⊥AC;
(2)∵E、F分别是OA、OB的中点,
∴EF是△OAB的中位线,
∴EF=$\frac{1}{2}$AB,
由(1)得:DE⊥AC,
∴∠DEC=90°,
∵G为CD的中点,
∴EG=$\frac{1}{2}$CD,
∴EF=EG.
点评 本题考查了平行四边形的性质、等腰三角形的性质、三角形中位线定理以及直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,证明三角形是等腰三角形和运用三角形中位线定理是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | B. | 4$\sqrt{3}$-3$\sqrt{3}$=1 | C. | 2$\sqrt{\frac{1}{2}}$=$\sqrt{2}$ | D. | 3÷$\sqrt{2}$=2$\sqrt{6}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com