精英家教网 > 初中数学 > 题目详情
如图,在等腰Rt△ABC中,∠C=90°,AC=8
2
,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.
(1)在此运动变化的过程中,△DFE是
等腰直角
等腰直角
三角形;
(2)若AD=
2
,求△DFE的面积.
分析:(1)连接CF,证△ADF≌△CEF,推出EF=DF,∠CFE=∠AFD,即可求出答案;
(2)求出四边形CDFE的面积等于△AFC的面积,求出△AFC的面积即可.
解答:(1)解:△DEF是等腰直角三角形,
理由是:连接CF;
∵△ABC是等腰直角三角形,F为AB中点,
∴∠FCB=∠A=45°,CF=AF=FB;
∵在△ADF和△CEF中
AD=CE
∠A=∠FCE
AF=CF

∴△ADF≌△CEF(SAS),
∴EF=DF,∠CFE=∠AFD,
∵∠AFD+∠CFD=90°,
∴∠CFE+∠CFD=∠EFD=90°,
∴△EDF是等腰直角三角形.

②解:当D、E分别为AC、BC中点时,四边形CDFE是正方形.
∵△ADF≌△CEF,
∴S△CEF=S△ADF
∴S四边形CEFD=S△AFC
∵在等腰Rt△ABC中,∠C=90°,AC=BC=8
2
,由勾股定理得:AB=16,
∴AF=CF=
1
2
AB=8,
∴S四边形CEFD=S△AFC=
1
2
×8×8=32,
∴△DFE的面积S=S四边形CEFD-S三角形DCE=32-
1
2
×8
2
×
2
=25.
点评:本题考查了直角三角形斜边上中线性质,等腰三角形的性质和判定,勾股定理,全等三角形的性质和判定,三角形的面积等知识点的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:
①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是(  )
A、①②③B、①④⑤C、①③④D、③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边精英家教网上运动,且保持AD=CE.连接DE、DF、EF.
①求证:△DFE是等腰直角三角形;
②在此运动变化的过程中,四边形CDFE的面积是否保持不变?试说明理由.
③求△CDE面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,则
ADDC
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰Rt△ABC中,∠ACB=90°,CA=CB,点M、N是AB上任意两点,且∠MCN=45°,点T为AB的中点.以下结论:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正确结论的序号是(  )
A、①②③④B、只有①②③
C、只有①③④D、只有②④

查看答案和解析>>

同步练习册答案