精英家教网 > 初中数学 > 题目详情
如图,抛物线y=
12
x2+mx+n交x轴于A、B两点,直线y=kx+b经过点A,与这条抛物线的对称轴交于点M(1,2),且点M与抛物线的顶点N关于x轴对称.
(1)求这条抛物线的函数关系式;
(2)根据图象,写出函数值y为负数时,自变量x的取值范围;
(3)设题中的抛物线与直线的另一交点为C,已知P(x,y)为直线AC上一点,过点P作PQ⊥x轴,交抛物线于点Q.当-1≤x≤1.5时,求线段PQ的最大值.
分析:(1)由于点M和抛物线顶点关于x轴对称,即可得到点N的坐标,进而表示出该抛物线的顶点坐标式函数解析式.
(2)令二次函数解析式中y=0求出x的值,确定出A与B的坐标,利用函数图象即可求出y小于0时x的范围;
(3)将点A与点B的坐标代入y=kx+b求出k与b的值,确定直线AC的解析式,得到点P坐标为(x,x+1),根据直线AC和抛物线的解析式,即可得到P、Q的纵坐标,从而得到关于PQ的长和P点横坐标的函数关系式,根据所得函数的性质即可求出PQ的最大值及对应的P点坐标.
解答:解:(1)由题意知,抛物线顶点N的坐标为(1,-2),
故其函数关系式为y=
1
2
(x-1)2-2=
1
2
x2-x-
3
2


(2)由
1
2
x2-x-
3
2
=0,
得x=-1或3,即A(-1,0)、B(3,0);
根据图象得:函数值y为负数时,自变量x的取值范围为-1<x<3;

(3)由(2)得:A(-1,0)、B(3,0);
∵将A(-1,0)、M(1,2)代入y=kx+b中得:
-k+b=0
k+b=2

解得:
k=1
b=1

∴直线AC的函数关系式为y=x+1,
∴P坐标为(x,x+1),Q的坐标为(x,
1
2
x2-x-
3
2
),
∴PQ=(x+1)-(
1
2
x2-x-
3
2
)=-
1
2
x2+2x+
5
2
=-
1
2
(x-2)2+
9
2

∵a=-
1
2
<0,-1≤x≤1.5,
∴当x=1.5时,PQ有最大值为
35
8

即P点(1.5,2.5)时,PQ长有最大值为
35
8
点评:此题主要考查了二次函数解析式的确定、函数图象交点坐标的求法、二次函数最值的应用、坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法及数形结合的思想是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c与x轴交于点A、B,与y轴交于点C,如果OB=OC=
1
2
OA,那么b的值为(  )
A、-2
B、-1
C、-
1
2
D、
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,抛物线y=x2+bx+c(b、c为常数)经过原点和E(3,0).
(1)求该抛物线所对应的函数关系式;
(2)设A是该抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值及此时点A的坐标;如果不存在,请说明理由;
③当B(
12
,0)时,x轴上是否存在两点P、Q(点P在点Q的左边),使得四边形PQDA是菱形?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=
12
(x+1)2-2
与x轴交于A、B两点,P为该抛物线上一点,且满足△PAB的面积等于4,这样的点P有
3
3
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+
5
2
与直线ABy=
1
2
x+
1
2
交于x轴上的一点A,和另一点B(4,n).点P是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线PQ与直线AB垂直,交直线AB于点Q,.
(1)求抛物线的解析式和cos∠BAO的值;
(2)设点P的横坐标为m用含m的代数式表示线段PQ的长,并求出线段PQ长的最大值;
(3)点E是抛物线上一点,过点E作EF∥AC,交直线AB与点F,若以E、F、A、C为顶点的四边形为平行四边形,直接写出相应的点E的坐标.

查看答案和解析>>

同步练习册答案