分析 根据勾股定理得到AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=5,由折叠的性质得到AB′=AB=3,DB′=BD,∠AB′D=∠CB′D=90°,设B′D=BD=x,则CD=4-x,根据勾股定理即可得到结论.
解答 解:在Rt△ABC中,∠B=90°,AB=3,BC=4,
∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=5,
∵将△ABC折叠,使点B恰好落在斜边AC上,与点B′重合,
∴AB′=AB=3,DB′=BD,∠AB′D=∠CB′D=90°,
∴CB′=2,
设B′D=BD=x,则CD=4-x,
∵DB′2+CB′2=CD2,
∴x2+22=(4-x)2,
解得x=$\frac{3}{2}$,
∴DB′=$\frac{3}{2}$.
点评 本题考查了翻折变换-折叠问题,勾股定理,熟练掌握折叠的性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1+$\sqrt{3}$ | B. | 4 | C. | 2+$\sqrt{3}$ | D. | 2+$\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 60° | B. | 50° | C. | 40° | D. | 30° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com