分析 (1)根据邻边相等的平行四边形是菱形即可证明;
(2)过点O作OG⊥BC于点G.分别在Rt△OEG,Rt△OCG中解直角三角形即可;
解答 (1)证明:∵四边形ABCD是平行四边形,
∴BC∥AD,BC=AD.
∵E,F分别是BC,AD的中点,
∴$BE=\frac{1}{2}BC,AF=\frac{1}{2}AD$.
∴BE=AF.
∴四边形ABEF是平行四边形.
∵BC=2AB,
∴AB=BE.
∴平行四边形ABEF是菱形.
(2)解:过点O作OG⊥BC于点G.
∵E是BC的中点,BC=8,
∴BE=CE=4.
∵四边形ABEF是菱形,∠ABC=60°,
∴∠OBE=30°,∠BOE=90°.
∴OE=2,∠OEB=60°.
∴GE=1,OG=$\sqrt{3}$.
∴GC=5.
∴OC=$2\sqrt{7}$.
点评 本题考查平行四边形的性质、菱形的判定和性质、解直角三角形、拯救世界30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
盘数 | 胜盘数 | 负盘数 | 积分 | |
A | 8 | 4 | 4 | 32 |
B | 5 | 3 | 2 | 21 |
C | 6 | 2 | 4 | 22 |
D | 3 | a | b | c |
E | 6 | 3 | 3 | 24 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com