精英家教网 > 初中数学 > 题目详情

【题目】平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1(x0)的图象上.点A与点A关于点O对称,一次函数y2mx+n的图象经过点A

(1)a2,点B(42)在函数y1y2的图象上.

分别求函数y1y2的表达式;

直接写出使y1y20成立的x的范围.

(2)如图,设函数y1y2的图象相交于点B,点B的横坐标为3a,△AAB的面积为16,求k的值.

【答案】(1)①, y2=x-2;②2<x<4;(2)6.

【解析】

(1)由已知代入点坐标即可

(2)面积问题可以转化为△AOB面积再根据SAOBS四边形ACDB问题即可得解

1)由已知B(4,2)在y1x>0)的图象上,∴k=8,∴y1

a=2,∴点A坐标为(2,4),A′坐标为(﹣2,﹣4).

B(4,2),A(﹣2,﹣4)代入y2mx+n解得,∴y2x﹣2;

y1y2>0y1图象在y2x﹣2图象上方且两函数图象在x轴上方∴由图象得:2<x<4;

(2)分别过点ABACx轴于点CBDx轴于点DBO

OAA′中点SAOBSABA=8.

∵点AB在双曲线上,∴SAOCSBOD,∴SAOBS四边形ACDB=8.

由已知点AB坐标都表示为(a)(3a),∴

解得k=6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】善于归纳和总结的小明发现,数形结合是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形性质描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于点E,设AE=xBE=y,用含xy的式子表示图中的弦CD的长度),通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数xy的不等式,你也能发现这个不等式吗?写出你发现的不等式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=﹣x2+bx+cc0)的图象与x轴交于AB两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M

1)求二次函数的解析式;

2)点P为线段BM上的一个动点,过点Px轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;

3)探索:线段BM上是否存在点N,使NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于O,B=60°,CD是O的直径,点P是CD延长线上的一点,且AP=AC.

(1)求证:PA是O的切线;

(2)若AB=4+,BC=2,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在双曲线yx0)上,点B在双曲线yx0)上,且ABx轴,BCy轴,点Cx轴上,则ABC的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:规定是任意一个两位及以上的自然数,将的各位数字反向排列所得自然数相等,则称为回文数.,则称为回文数:如,则不是回文数.根据定义可得自然数列中11是第1个出现的回文数,则自然数列中第201个出现的回文数是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD,AB∥CD∠A=90°AB=1AD=3DC=5.S沿A→B→C运动到C点停止,以S为圆心,SD为半径作弧交射线DCT点,设S点运动的路径长为x,等腰△DST的面积为y,则yx的函数图象应为( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣10),与y轴交于点C04),作直线AC

1)求抛物线解析式;

2)点P在抛物线的对称轴上,且到直线ACx轴的距离相等,设点P的纵坐标为m,求m的值;

3)点My轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点CMNQ为顶点的四边形是菱形,请直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在第一象限内作射线OC,与x轴的夹角为30°,在射线OC上取点A,过点AAHx轴于点H.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以POQ为顶点,且以点Q为直角顶点的三角形与△AOH全等,则符合条件的点A的坐标是__________

查看答案和解析>>

同步练习册答案